On polynomials in primes, ergodic averages and monothetic groups

被引:0
作者
Hancl, Jaroslav [1 ]
Nair, Radhakrishnan [2 ]
Verger-Gaugry, Jean-Louis [3 ]
机构
[1] Univ Ostrava, Dept Math, 30 Dubna 22, Ostrava 1, Czech Republic
[2] Univ Liverpool, Math Sci, 1 Peach St, Liverpool L69 7ZL, England
[3] Univ Grenoble Alpes, Univ Savoie Mont Blanc, LAMA, CNRS UMR 5127, F-73000 Chambery, France
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Polynomial in primes; Ergodic averages; A-adic numbers; Strong uniform distribution; CIRCLE METHOD APPROACH; SUBSETS; THEOREM;
D O I
10.1007/s00605-024-01948-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums
引用
收藏
页码:47 / 62
页数:16
相关论文
共 50 条
[21]   Super convergence of ergodic averages for quasiperiodic orbits [J].
Das, Suddhasattwa ;
Yorke, James A. .
NONLINEARITY, 2018, 31 (02) :491-501
[22]   Spectral decompositions, ergodic averages, and the Hilbert transform [J].
Berkson, E ;
Gillespie, TA .
STUDIA MATHEMATICA, 2001, 144 (01) :39-61
[23]   Ergodic averages along sequences of slow growth [J].
Loyd, Kaitlyn ;
Mondal, Sovanlal .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03)
[24]   Vector-Valued Maximal Inequalities and Multiparameter Oscillation Inequalities for the Polynomial Ergodic Averages Along Multi-dimensional Subsets of Primes [J].
Mehlhop, Nathan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2024, 30 (06)
[25]   On the homogeneous ergodic bilinear averages with Mobius and Liouville weights [J].
el Abdalaoui, E. H. .
ILLINOIS JOURNAL OF MATHEMATICS, 2020, 64 (01) :1-19
[26]   Random Sequences and Pointwise Convergence of Multiple Ergodic Averages [J].
Frantzikinakis, N. ;
Lesigne, E. ;
Wierdl, M. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (02) :585-617
[27]   Rates of divergence of non-conventional ergodic averages [J].
Quas, Anthony ;
Wierdl, Mate .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 :233-262
[29]   A Tauberian Theorem for Ergodic Averages, Spectral Decomposability, and the Dominated Ergodic Estimate for Positive Invertible Operators [J].
Earl Berkson ;
T.A. Gillespie .
Positivity, 2003, 7 :161-175
[30]   Multiple recurrence and convergence for certain averages along shifted primes [J].
Sun, Wenbo .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :1592-1609