On polynomials in primes, ergodic averages and monothetic groups

被引:0
作者
Hancl, Jaroslav [1 ]
Nair, Radhakrishnan [2 ]
Verger-Gaugry, Jean-Louis [3 ]
机构
[1] Univ Ostrava, Dept Math, 30 Dubna 22, Ostrava 1, Czech Republic
[2] Univ Liverpool, Math Sci, 1 Peach St, Liverpool L69 7ZL, England
[3] Univ Grenoble Alpes, Univ Savoie Mont Blanc, LAMA, CNRS UMR 5127, F-73000 Chambery, France
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 01期
关键词
Polynomial in primes; Ergodic averages; A-adic numbers; Strong uniform distribution; CIRCLE METHOD APPROACH; SUBSETS; THEOREM;
D O I
10.1007/s00605-024-01948-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums
引用
收藏
页码:47 / 62
页数:16
相关论文
共 50 条
[1]   On polynomials in primes, ergodic averages and monothetic groups [J].
Jaroslav Hančl ;
Radhakrishnan Nair ;
Jean-Louis Verger-Gaugry .
Monatshefte für Mathematik, 2024, 204 :47-62
[2]   Nilsystems and ergodic averages along primes [J].
Eisner, Tanja .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (10) :2769-2777
[3]   MULTIPLE ERGODIC AVERAGES FOR VARIABLE POLYNOMIALS [J].
Koutsogiannis, Andreas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) :4637-4668
[4]   Variation estimates for averages along primes and polynomials [J].
Zorin-Kranich, Pavel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (01) :210-238
[5]   ON THE CONVERGENCE OF BILATERAL ERGODIC AVERAGES [J].
Cuny, Christophe ;
Derriennic, Yves .
COLLOQUIUM MATHEMATICUM, 2021, 164 (02) :327-339
[6]   MULTIPLE ERGODIC AVERAGES IN ABELIAN GROUPS AND KHINTCHINE TYPE RECURRENCE [J].
Shalom, Or .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (04) :2729-2761
[7]   Seminorm control for ergodic averages with commuting transformations along pairwise dependent polynomials [J].
Frantzikinakis, N. I. K. O. S. ;
Kuca, B. O. R. Y. S. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2023, 43 (12) :4074-4137
[8]   Oscillation and jump inequalities for the polynomial ergodic averages along multi-dimensional subsets of primes [J].
Mehlhop, Nathan ;
Slomian, Wojciech .
MATHEMATISCHE ANNALEN, 2024, 388 (03) :2807-2842
[9]   MULTIPLE ERGODIC AVERAGES FOR TEMPERED FUNCTIONS [J].
Koutsogiannis, Andreas .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) :1177-1205
[10]   Slow Convergences of Ergodic Averages [J].
Ryzhikov, V. V. .
MATHEMATICAL NOTES, 2023, 113 (5-6) :704-707