[2] Univ Liverpool, Math Sci, 1 Peach St, Liverpool L69 7ZL, England
[3] Univ Grenoble Alpes, Univ Savoie Mont Blanc, LAMA, CNRS UMR 5127, F-73000 Chambery, France
来源:
MONATSHEFTE FUR MATHEMATIK
|
2024年
/
204卷
/
01期
关键词:
Polynomial in primes;
Ergodic averages;
A-adic numbers;
Strong uniform distribution;
CIRCLE METHOD APPROACH;
SUBSETS;
THEOREM;
D O I:
10.1007/s00605-024-01948-0
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let G denote a compact monothetic group, and let rho(x)=alpha kx(k)+...+alpha 1 x+alpha 0, where alpha(0),...,alpha(k) are elements of Gone of which is a generator of G. Let(p(n)) n >= 1denote the sequence of rational prime numbers. Suppose f is an element of L (p) (G)for p >1. It is known that if A (N) f(x):=1 /N (N) & sum; (n=1)f(x+rho(p(n))) (N=1,2,...), then the limit lim(n ->infinity)A(N) f(x)exists for almost all x with respect Haar measure. We show that if G is connected then the limit is integral(G)f d lambda. In the case where G is the a-adic integers, which is a totally disconnected group, the limit is described in terms of Fourier multipliers which are generalizations of Gauss sums
机构:
Univ Brest, Math, LMBA UMR CNRS 6205, 6 Av Le Gorgeu, F-29238 Brest, FranceUniv Brest, Math, LMBA UMR CNRS 6205, 6 Av Le Gorgeu, F-29238 Brest, France
Cuny, Christophe
Derriennic, Yves
论文数: 0引用数: 0
h-index: 0
机构:
Univ Brest, Math, LMBA UMR CNRS 6205, 6 Av Le Gorgeu, F-29238 Brest, FranceUniv Brest, Math, LMBA UMR CNRS 6205, 6 Av Le Gorgeu, F-29238 Brest, France