Photocatalytic Hydrogen Production from Pure Water Using a IEF-11/g-C3N4 S-Scheme Heterojunction

被引:17
作者
Qian, An [1 ]
Han, Xin [1 ]
Liu, Qiaona [1 ]
Fan, Minwei [1 ]
Ye, Lei [1 ]
Pu, Xin [1 ]
Chen, Ying [2 ]
Liu, Jichang [1 ,3 ]
Sun, Hui [1 ]
Zhao, Jigang [1 ]
Ling, Hao [1 ]
Wang, Rongjie [3 ]
Li, Jiangbing [3 ]
Jia, Xin [3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem Engn, Shanghai 200237, Peoples R China
[2] SINOPEC Shanghai Engn Co Ltd SSEC, Shanghai 200120, Peoples R China
[3] Shihezi Univ, Sch Chem & Chem Engn, State Key Lab Incubat Base Green Proc Chem Engn, Shihezi 832003, Peoples R China
基金
中国国家自然科学基金;
关键词
MOF; g-C3N4; S-scheme heterojunction; Water splitting; Hydrogen production; CARBON NITRIDE; G-C3N4; CONSTRUCTION; NANOSHEETS; VACANCIES;
D O I
10.1002/cssc.202301538
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Construction of S-scheme heterojunction offers a promising way to enhance the photocatalytic performance of photocatalysts for converting solar energy into chemical energy. However, the photocatalytic H-2 production in pure water without sacrificial agents is still a challenge. Herein, the IEF-11 with the best photocatalytic H-2 production performance in MOFs and suitable band structure was selected and firstly constructed with g-C3N4 to obtain a S-scheme heterojunction for photocatalytic H-2 production from pure water. As a result, the novel IEF-11/g-C3N4 heterojunction photocatalysts exhibited significantly improved photocatalytic H-2 production performance in pure water without any sacrificial agent, with a rate of 576 mu mol/g/h, which is about 8 times than that of g-C3N4 and 23 times of IEF-11. The novel IEF-11/g-C3N4 photocatalysts also had a photocatalytic H-2 production rate of up to 92 mu mol/g/h under visible light and a good photocatalytic stability. The improved performance can be attributed to the efficient separation of photogenerated charge carriers, faster charge transfer efficiency and longer photogenerated carrier lifetimes, which comes from the forming of S-scheme heterojunction in the IEF-11/g-C3N4 photocatalyst. This work is a promising guideline for obtaining MOF-based or g-C3N4-based photocatalysts with great photocatalytic water splitting performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] g-C3N4 Derived Materials for Photocatalytic Hydrogen Production: A Mini Review on Design Strategies
    Su, Kai
    Deng, Shaoqi
    Li, Linxiao
    Qin, Qirui
    Yang, Jingyu
    Chen, Yan
    Zhang, Shengli
    Chen, Junming
    JOURNAL OF RENEWABLE MATERIALS, 2022, 10 (03) : 653 - 663
  • [32] Spatially distributed Z-scheme heterojunction of g-C3N4/SnIn4S8 for enhanced photocatalytic hydrogen production and pollutant degradation
    Tang, Changcun
    Xiong, Renzhi
    Li, Kunjiao
    Xiao, Yanhe
    Cheng, Baochang
    Lei, Shuijin
    APPLIED SURFACE SCIENCE, 2022, 598
  • [33] α-NiS/g-C3N4 Nanocomposites for Photocatalytic Hydrogen Evolution and Degradation of Tetracycline Hydrochloride
    Qi, Huajin
    Wang, Chenyu
    Shen, Luping
    Wang, Hongmei
    Lian, Yuan
    Zhang, Huanxia
    Ma, Hongxia
    Zhang, Yong
    Zhang, Jin Zhong
    CATALYSTS, 2023, 13 (06)
  • [34] In Situ Preparation of Mn0.2Cd0.8S-Diethylenetriamine/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic Hydrogen Production
    Zhao, Zhiwei
    Dai, Kai
    Zhang, Jinfeng
    Dawson, Graham
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (01)
  • [35] Efficient Hydrogen Evolution under Visible Light by Bimetallic Phosphide NiCoP Combined with g-C3N4/CdS S-Scheme Heterojunction
    Ma, Wangyang
    Zheng, Dewen
    Xian, Yuxi
    Hu, Xianhai
    Zhang, Qian
    Wang, Shanyu
    Cheng, Congliang
    Liu, Jin
    Wang, Ping
    CHEMCATCHEM, 2021, 13 (20) : 4403 - 4410
  • [36] Review on g-C3N4-based S-scheme heterojunction photocatalysts
    Li, Yunfeng
    Xia, Zhiling
    Yang, Qing
    Wang, Linxi
    Xing, Yan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 125 : 128 - 144
  • [37] Cu2NiSnS4/g-C3N4 S-scheme photocatalysts: interfacial surface trap states vs. hydrogen production
    Rugma, T. P.
    Krishna, B. S. Rishi
    Kangeyan, K. Priyanga
    Bernaurdshaw, Neppolian
    AlArifi, Abdullah Saad
    Lakhera, Sandeep Kumar
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (19): : 4461 - 4471
  • [38] S-Scheme α-Fe2O3/g-C3N4 Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation
    Viet Van Pham
    Thao Kim Truong
    Le Viet Hai
    Ha Phan Phuong La
    Hoang Thai Nguyen
    Vinh Quang Lam
    Hien Duy Tong
    Thang Quoc Nguyen
    Sabbah, Amr
    Chen, Kuei-Hsien
    You, Sheng-Jie
    Thi Minh Cao
    ACS APPLIED NANO MATERIALS, 2022, 5 (03) : 4506 - 4514
  • [39] Heterojunction nanoarchitectonics with SnS2/g-C3N4 S-scheme toward enhanced photooxidation and photoreduction
    Song, Tong
    Zhang, Xiao
    Che, Quande
    Yang, Ping
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 113 : 389 - 400
  • [40] S-scheme Ti0.7Sn0.3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation
    Guo, Bingrong
    Liu, Bin
    Wang, Chaoli
    Wang, Yuhua
    Yin, Shu
    Javed, Muhammad Sufyan
    Han, Weihua
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (02):