Stretched non-positive Weyl connections on solvable Lie groups

被引:0
作者
Bochenski, Maciej [1 ]
Jastrzebski, Piotr [1 ]
Tralle, Aleksy [1 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54, PL-10710 Olsztyn, Poland
关键词
Invariant Weyl connection; Solvable Lie algebra; Solvmanifold; Non-positive curvature; CLASSIFICATION; MANIFOLDS; METRICS; FLOWS;
D O I
10.1007/s10231-023-01409-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the structure of solvable Lie groups endowed with invariant stretched non-positive Weyl connections and find classes of solvable Lie groups admitting and not admitting such connections. In dimension 4 we fully classify solvable Lie groups which admit invariant SNP Weyl connections.
引用
收藏
页码:1463 / 1481
页数:19
相关论文
共 30 条
[1]  
Ancochea J.M., 2001, Extracta Math., V16, P153
[2]   Complex structures of splitting type [J].
Angella, Daniele ;
Otal, Antonio ;
Ugarte, Luis ;
Villacampa, Raquel .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (04) :1309-1350
[3]  
Assylbekov Y. M., ARXIV
[4]   HOMOGENEOUS MANIFOLDS WITH NEGATIVE CURVATURE .1. [J].
AZENCOTT, R ;
WILSON, EN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :323-362
[5]   SOLVABLE EXTENSIONS OF NILPOTENT COMPLEX LIE ALGEBRAS OF TYPE {2n, 1, 1} [J].
Bartolone, C. ;
Di Bartolo, A. ;
Falcone, G. .
MOSCOW MATHEMATICAL JOURNAL, 2018, 18 (04) :607-616
[6]   ERGODIC THEORY OF AXIOM A FLOWS [J].
BOWEN, R ;
RUELLE, D .
INVENTIONES MATHEMATICAE, 1975, 29 (03) :181-202
[7]  
Console S., 2016, Rend. Semin. Mat. Univ. Politec. Torino, V74, P95
[9]   The action of a compact Lie group on nilpotent Lie algebras of type {n, 2} [J].
Falcone, Giovanni ;
Figula, Agota .
FORUM MATHEMATICUM, 2016, 28 (04) :795-806
[10]   Special Hermitian metrics on compact solvmanifolds [J].
Fino, Anna ;
Vezzoni, Luigi .
JOURNAL OF GEOMETRY AND PHYSICS, 2015, 91 :40-53