Ulrich bundles on some threefold scrolls over Fe

被引:1
作者
Fania, Maria Lucia [1 ]
Flamini, Flaminio [2 ]
机构
[1] Univ Aquila, Dipartimento Ingn & Sci Informaz & Matemat, Via Vetoio Loc Coppito, I-67100 Laquila, Italy
[2] Univ Roma Tor Vergata, Dipartimento Matemat, Viale Ric Sci 1, I-00133 Rome, Italy
关键词
Ulrich bundles; 3-folds; Ruled surfaces; Moduli; Deformations; VECTOR-BUNDLES; MODULI SPACES; HILBERT SCHEME;
D O I
10.1016/j.aim.2023.109409
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence of Ulrich vector bundles on suitable 3-fold scrolls Xe over Hirzebruch surfaces Fe, for any e 0, which arise as tautological embeddings of projectivization of very-ample vector bundles on Fe that are uniform in the sense of Brosius and Aprodu-Brinzanescu, cf. [10] and [3] respectively. We explicitly describe components of moduli spaces of rank r 1 vector bundles which are Ulrich with respect to the tautological polarization on Xe and whose general point is a slope-stable, indecomposable vector bundle. We moreover determine the dimension of such components, proving also that they are generically smooth. As a direct consequence of these facts, we also compute the Ulrich complexity of any such Xe and give an effective proof of the fact that these Xe's turn out to be geometrically Ulrich wild. At last, the machinery developed for 3-fold scrolls Xe allows us to deduce Ulrichness results on rank r 1 vector bundles on Fe, for any e 0, with respect to a naturally associated (very ample) polarization. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:60
相关论文
共 30 条
[1]   Criteria for Very Ampleness of Rank Two Vector Bundles over Ruled Surfaces [J].
Alzati, Alberto ;
Besana, Gian Mario .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2010, 62 (06) :1201-1227
[2]   Characterization of Ulrich bundles on Hirzebruch surfaces [J].
Antonelli, Vincenzo .
REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (01) :43-74
[3]   Moduli spaces of vector bundles over ruled surfaces [J].
Aprodu, M ;
Brînzanescu, V .
NAGOYA MATHEMATICAL JOURNAL, 1999, 154 :111-122
[4]   Ulrich bundles on ruled surfaces [J].
Aprodu, Marian ;
Costa, Laura ;
Maria Miro-Roig, Rosa .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (01) :131-138
[5]   An introduction to Ulrich bundles [J].
Beauville, Arnaud .
EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (01) :26-36
[6]  
Beltrametti M, 1995, Expositions in Mathematics, V16
[7]  
BELTRAMETTI MC, 1999, REV MAT COMPLUT, V12
[8]   Hilbert scheme of some threefold scrolls over the Hirzebruch surface F1 [J].
Besana, Gian Mario ;
Fania, Maria Lucia ;
Flamini, Flaminio .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2013, 65 (04) :1243-1272
[9]   The dimension of the Hilbert scheme of special threefolds [J].
Besana, GM ;
Fania, ML .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (10) :3811-3829
[10]   RANK-2 VECTOR-BUNDLES ON A RULED SURFACE .1. [J].
BROSIUS, JE .
MATHEMATISCHE ANNALEN, 1983, 265 (02) :155-168