Existence of solutions for fractional boundary value problems with Riesz space derivative and nonlocal conditions

被引:0
作者
Toprakseven, Suayip [1 ]
机构
[1] Artvin Coruh Univ, Fac Engn, Dept Comp Sci, TR-08100 Artvin, Turkiye
来源
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA | 2023年 / 68卷 / 04期
关键词
Fractional boundary value problem; Riesz-Caputo fractional deriva-tive; existence and uniqueness; fixed point; nonlocal conditions; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; DIFFUSION EQUATION; UNIQUENESS; ORDER;
D O I
10.24193/subbmath.2023.4.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the fixed point theorems, we give sufficient conditions for the existence and uniqueness of solutions for the nonlocal fractional boundary value problem of nonlinear Riesz-Caputo differential equation. The boundedness assumption on the nonlinear term is replaced by growth conditions or by a continuous function. Finally, some examples are presented to illustrate the applications of the obtained results.
引用
收藏
页码:701 / 715
页数:15
相关论文
共 33 条
[1]   Positive solutions for Dirichlet problems, of singular nonlinear fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :57-68
[2]   Existence of positive solutions of nonlinear fractional differential equations [J].
Babakhani, A ;
Daftardar-Gejji, V .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 278 (02) :434-442
[3]   Boundary value problems for differential equations with fractional order and nonlocal conditions [J].
Benchohra, M. ;
Hamani, S. ;
Ntouyas, S. K. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2391-2396
[4]  
BOUCHERIF A, 2003, FIXED POINT THEORY, V4, P205
[5]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[6]  
Byszewski L., 1991, Applicable Analysis, V40, P11, DOI [10.1080/00036819008839989, DOI 10.1080/00036819008839989]
[7]   Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative [J].
Celik, Cem ;
Duman, Melda .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1743-1750
[8]   Anti-periodic boundary value problems with Riesz-Caputo derivative [J].
Chen, Fulai ;
Chen, Anping ;
Wu, Xia .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[9]   An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator [J].
Chen, Taiyong ;
Liu, Wenbin .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1671-1675
[10]   Anti-periodic solutions for evolution equations associated with maximal monotone mappings [J].
Chen, Yuqing ;
Nieto, Juan J. ;
O'Regan, Donal .
APPLIED MATHEMATICS LETTERS, 2011, 24 (03) :302-307