End-Group Engineering of Nonfullerene Acceptors for High-Efficiency Organic Solar Cells

被引:23
作者
Luo, Zhenghui [1 ]
Yan, He [2 ,3 ]
Yang, Chuluo [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen Key Lab New Informat Display & Storage Ma, Shenzhen 518060, Peoples R China
[2] Hong Kong Univ Sci & Technol HKUST, Dept Chem, Kowloon, Hong Kong 999077, Peoples R China
[3] Hong Kong Univ Sci & Technol HKUST, Chinese Natl Engn Res Ctr Tissue Restorat & Recons, Hong Kong Branch, Kowloon, Hong Kong 999077, Peoples R China
来源
ACCOUNTS OF MATERIALS RESEARCH | 2023年 / 4卷 / 11期
关键词
PERFORMANCE; ENERGY;
D O I
10.1021/accountsmr.3c00160
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, organic solar cells (OSCs) have made significant advancements due to a deeper understanding of molecular design and device technology. One area of molecular design that has contributed to these advancements is the emergence of nonfullerene small-molecule acceptors (SMAs) and polymerized SMAs. The molecular design strategy of state-of-the-art SMAs focuses on two aspects: the electron-rich central core unit and electron-deficient end groups. Different from the manipulation of the central cores, end-group engineering is a direct and efficient means to adjust the physicochemical properties and crystallization/aggregation behavior of acceptors, leading to enhanced photovoltaic performance. On the basis of our recent research advances, herein we focus on the topic of end-group engineering of nonfullerene acceptors, aiming to provide a comprehensive understanding of the optimization of end groups for the design of high-performance acceptor materials.In this Account, first, we systematically compare the difference between thiophene-fused and benzene-fused end groups in synthetic routes and molecular energy levels. Unlike the centrosymmetric benzene, the axisymmetric thiophene-fused end groups have two different fusion modes, resulting in their different frontier orbital energy levels. Second, we offer a wrought review of SMAs with thiophene-fused or thiophene derivatives-fused end groups, emphasizing the important role of thiophene derivatives-fused end groups in enhancing molecular packing, improving exciton bonding energy, and reducing energy loss in OSCs. Additionally, we reveal the specific reason why the thiophene-fused end group with an alpha/beta fusion site and the thiophene-fused end group with a beta/gamma fusion site have significantly different molecular energy levels. Third, we summarize the photovoltaic parameters and conventional physicochemical properties of polymerized SMAs based on monobromobenzene-fused end groups and fluorobromine (or chlorobromide) cosubstituted benzene-fused end groups. We demonstrate that regioregular polymerized SMAs show great prospects in realizing high-performance all-polymer solar cells by eliminating the disorder of molecular backbone structure with pure monobromobenzene-fused end groups. Furthermore, the halogenation strategy (fluorination and chlorination) is also an effective method for designing high-performance PSMAs with large electron mobility induced by the intermolecular noncovalent interactions of halogen<middle dot><middle dot><middle dot>H, halogen<middle dot><middle dot><middle dot>S, and halogen<middle dot><middle dot><middle dot>halogen. Finally, we analyze the role of asymmetric end group substitution for developing high-performance SMAs. In comparison with symmetric SMAs, the asymmetric one achieves low energy loss while ensuring sufficient charge separation. As a summary and perspective, we discuss the current questions regarding end groups and propose our insights into the future development of nonfullerene acceptors with novel end groups toward low-cost and high-performance OSCs.
引用
收藏
页码:968 / 981
页数:14
相关论文
共 50 条
  • [41] Superior End-Group Stacking Promotes Simultaneous Multiple Charge-Transfer Mechanisms in Organic Solar Cells with an All-Fused-Ring Nonfullerene Acceptor
    Wang, Li-Li
    Han, Jin-Hong
    Zhou, Hai-Ping
    Pan, Qing-Qing
    Zhao, Zhi-Wen
    Su, Zhongmin
    ACS APPLIED MATERIALS & INTERFACES, 2024, : 35390 - 35399
  • [42] Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency
    Chai, Gaoda
    Chang, Yuan
    Zhang, Jianquan
    Xu, Xiaopeng
    Yu, Liyang
    Zou, Xinhui
    Li, Xiaojun
    Chen, Yuzhong
    Luo, Siwei
    Liu, Binbin
    Bai, Fujin
    Luo, Zhenghui
    Yu, Han
    Liang, Jiaen
    Liu, Tao
    Wong, Kam Sing
    Zhou, Hang
    Peng, Qiang
    Yan, He
    ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) : 3469 - 3479
  • [43] Cyano-functionalized small-molecule acceptors for high-efficiency wide-bandgap organic solar cells
    Zhang, Jun
    Lv, Jie
    Dong, Xiyue
    Xu, Tongle
    Dai, Xuexin
    Duan, Tainan
    Kan, Zhipeng
    Liu, Ping
    Lu, Shirong
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (27) : 9195 - 9200
  • [44] Ternary Polymer Solar Cells with High Efficiency of 14.24% by Integrating Two Well-Complementary Nonfullerene Acceptors
    Jiang, Huanxiang
    Li, Xiaoming
    Wang, Jianing
    Qiao, Shanlin
    Zhang, Yong
    Zheng, Nan
    Chen, Weichao
    Li, Yonghai
    Yang, Renqiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (34)
  • [45] End group engineering enabling organic solar cells with high open-circuit voltage
    Zou, Yingping
    Sun, Chaoyuan
    Xu, Xiang
    Zhou, Zhixiang
    Luo, Xiaoyan
    Lu, Xinhui
    Hu, Yunbin
    Yuan, Jun
    Xia, Xinxin
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
  • [46] End Group Tuning in Acceptor-Donor-Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells
    Wadsworth, Andrew
    Bristow, Helen
    Hamid, Zeinab
    Babics, Maxime
    Gasparini, Nicola
    Boyle, Colm W.
    Zhang, Weimin
    Dong, Yifan
    Thorley, Karl J.
    Neophytou, Marios
    Ashraf, Raja Shahid
    Durrant, James R.
    Baran, Derya
    McCulloch, Iain
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (47)
  • [47] Ionic liquids engineering for high-efficiency and stable perovskite solar cells
    Deng, Xiaoyu
    Xie, Lisha
    Wang, Shurong
    Li, Chengbo
    Wang, Aili
    Yuan, Yuan
    Cao, Zhiyuan
    Li, Tingshuai
    Ding, Liming
    Hao, Feng
    CHEMICAL ENGINEERING JOURNAL, 2020, 398 (398)
  • [48] Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells
    Alharbi, Essa A.
    Krishna, Anurag
    Baumeler, Thomas P.
    Dankl, Mathias
    Fish, George C.
    Eickemeyer, Felix
    Ouellette, Olivier
    Ahlawat, Paramvir
    Skorjanc, Viktor
    John, Elsa
    Yang, Bowen
    Pfeifer, Lukas
    Avalos, Claudia Esther
    Pan, Linfeng
    Mensi, Mounir
    Schouwink, Pascal Alexander
    Moser, Jacques-E
    Hagfeldt, Anders
    Rothlisberger, Ursula
    Zakeeruddin, Shaik M.
    Gratzel, Michael
    ACS ENERGY LETTERS, 2021, 6 (10) : 3650 - 3660
  • [49] Additive-assisted strategy for high-efficiency organic solar cells
    Xie, Linwei
    He, Dan
    Zhao, Fuwen
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (03) : 819 - 837
  • [50] Engineering of W-shaped benzodithiophenedione-based small molecular acceptors with improved optoelectronic properties for high efficiency organic solar cells
    Rashid, Ehsan Ullah
    Hadia, N. M. A.
    Iqbal, Javed
    Mehmood, Rana Farhat
    Somaily, H. H.
    Akram, Sahar Javaid
    Shawky, Ahmed M.
    Khan, Muhammad Imran
    Noor, Sadia
    Khera, Rasheed Ahmad
    RSC ADVANCES, 2022, 12 (34) : 21801 - 21820