Convective-Wave Solutions of the Richard-Gavrilyuk Model for Inclined Shallow-Water Flow

被引:8
作者
Rodrigues, L. Miguel [1 ]
Yang, Zhao [2 ]
Zumbrun, Kevin [3 ]
机构
[1] Univ Rennes & IUF, CNRS, UMR 6625, IRMAR, F-35000 Rennes, France
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Indiana Univ, Bloomington, IN 47405 USA
基金
英国工程与自然科学研究理事会;
关键词
Shallow-water equations; Stability of traveling waves; Hyperbolic balance laws; CONSERVATION-LAWS; PERIODIC-WAVES; ASYMPTOTIC STABILITY; SPECTRAL STABILITY; INSTABILITY; EQUATIONS; BEHAVIOR; FRONTS;
D O I
10.1007/s42286-022-00072-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study for the Richard-Gavrilyuk model of inclined shallow-water flow, an extension of the classical Saint Venant equations incorporating vorticity, the new feature of convective-wave solutions analogous to contact discontinuities in inviscid conservation laws. These are traveling waves for which fluid velocity is constant and equal to the speed of propagation of the wave, but fluid height and/or enstrophy (thus vorticity) varies. Together with hydraulic shocks, they play an important role in the structure of Riemann solutions.
引用
收藏
页码:1 / 39
页数:39
相关论文
共 59 条
[1]   ABOUT PLANE PERIODIC WAVES OF THE NONLINEAR SCHRODINGER EQUATIONS [J].
Audiard, Corentin ;
Miguel Rodrigues, L. .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2022, 150 (01) :111-207
[2]   Dynamics of roll waves [J].
Balmforth, NJ ;
Mandre, S .
JOURNAL OF FLUID MECHANICS, 2004, 514 :1-33
[3]   BALANCED FLUX FORMULATIONS FOR MULTIDIMENSIONAL EVANS-FUNCTION COMPUTATIONS FOR VISCOUS SHOCKS [J].
Barker, Blake ;
Humpherys, Jeffrey ;
Lyng, Gregory ;
Zumbrun, Kevin .
QUARTERLY OF APPLIED MATHEMATICS, 2018, 76 (03) :531-545
[4]   Convex Entropy, Hopf Bifurcation, and Viscous and Inviscid Shock Stability [J].
Barker, Blake ;
Freistuehler, Heinrich ;
Zumbrun, Kevin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (01) :309-372
[5]   Metastability of solitary roll wave solutions of the St. Venant equations with viscosity [J].
Barker, Blake ;
Johnson, Mathew A. ;
Rodrigues, L. Miguel ;
Zumbrun, Kevin .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (16) :1289-1310
[6]   Landau Damping: Paraproducts and Gevrey Regularity [J].
Bedrossian J. ;
Masmoudi N. ;
Mouhot C. .
Annals of PDE, 2 (1)
[7]   INVISCID DAMPING AND THE ASYMPTOTIC STABILITY OF PLANAR SHEAR FLOWS IN THE 2D EULER EQUATIONS [J].
Bedrossian, Jacob ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (122) :195-300
[8]   Co-periodic stability of periodic waves in some Hamiltonian PDEs [J].
Benzoni-Gavage, S. ;
Mietka, C. ;
Rodrigues, L. M. .
NONLINEARITY, 2016, 29 (11) :3241-3308
[9]  
Blochas P., IN PRESS
[10]  
Blochas P., 2022, arXiv