Design and Validation of a Multi-Arm Relocatable Manipulator for Space Applications

被引:3
作者
Hoffman, Enrico Mingo [1 ,3 ]
Laurenzi, Arturo [1 ]
Ruscelli, Francesco [1 ]
Rossini, Luca [1 ]
Baccelliere, Lorenzo [1 ]
Antonucci, Davide [1 ]
Margan, Alessio [1 ]
Guria, Paolo [1 ]
Migliorini, Marco [1 ]
Cordasco, Stefano [1 ]
Raiola, Gennaro [1 ,3 ]
Muratore, Luca [1 ]
Estremera Rodrigo, Joaquin [2 ]
Rusconi, Andrea [3 ]
Sangiovanni, Guido [3 ]
Tsagarakis, Nikos G. [1 ]
机构
[1] Ist Italiano Tecnol IIT, Humanoids & Human Ctr Mechatron Lab, Via Morego 30, I-16163 Genoa, Italy
[2] GMV, Isaac Newton 11, Madrid 28760, Spain
[3] Leonardo SpA, Viale Europa, I-20014 Nerviano, Italy
来源
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023) | 2023年
关键词
D O I
10.1109/ICRA48891.2023.10160389
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents the computational design and validation of the Multi-Arm Relocatable Manipulator (MARM), a three-limb robot for space applications, with particular reference to the MIRROR (i.e., the Multi-arm Installation Robot for Readying ORUs and Reflectors) use-case scenario as proposed by the European Space Agency. A holistic computational design and validation pipeline is proposed, with the aim of comparing different limb designs, as well as ensuring that valid limb candidates enable MARM to perform the complex loco-manipulation tasks required. Motivated by the task complexity in terms of kinematic reachability, (self)-collision avoidance, contact wrench limits, and motor torque limits affecting Earth experiments, this work leverages on multiple state-of-art planning and control approaches to aid the robot design and validation. These include sampling-based planning on manifolds, non-linear trajectory optimization, and quadratic programs for inverse dynamics computations with constraints. Finally, we present the attained MARM design and conduct preliminary tests for hardware validation through a set of lab experiments.
引用
收藏
页码:11887 / 11893
页数:7
相关论文
共 21 条
[1]   Robonaut: NASA's space humanoid [J].
Ambrose, RO ;
Aldridge, H ;
Askew, RS ;
Burridge, RR ;
Bluethmann, W ;
Diftler, M ;
Lovchik, C ;
Magruder, D ;
Rehnmark, F .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 2000, 15 (04) :57-62
[2]  
[Anonymous], DAT STAND INT ROB MA
[3]   The European Robotic Arm for the International Space Station [J].
Boumans, R ;
Heemskerk, C .
ROBOTICS AND AUTONOMOUS SYSTEMS, 1998, 23 (1-2) :17-27
[4]  
Hiltz M., 2001, Canadarm: 20 years of mission success through adaptation
[5]  
Hoffman EM, 2017, 2017 IEEE-RAS 17TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTICS (HUMANOIDS), P736, DOI 10.1109/HUMANOIDS.2017.8246954
[6]   CENTAURO: A Hybrid Locomotion and High Power Resilient Manipulation Platform [J].
Kashiri, Navvab ;
Baccelliere, Lorenzo ;
Muratore, Luca ;
Laurenzi, Arturo ;
Ren, Zeyu ;
Hoffman, Enrico Mingo ;
Kamedula, Malgorzata ;
Rigano, Giuseppe Francesco ;
Malzahn, Jorn ;
Cordasco, Stefano ;
Guria, Paolo ;
Margan, Alessio ;
Tsagarakis, Nikos G. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) :1595-1602
[7]   CartesI/O: A ROS Based Real-Time Capable Cartesian Control Framework [J].
Laurenzi, Arturo ;
Hoffman, Enrico Mingo ;
Muratore, Luca ;
Tsagarakis, Nikos G. .
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, :591-596
[8]  
Laurenzi A, 2018, IEEE-RAS INT C HUMAN, P320
[9]  
MATSUEDA T, 1991, NTC 91 : NATIONAL TELESYSTEMS CONFERENCE PROCEEDINGS, VOL 1, P391, DOI 10.1109/NTC.1991.148052
[10]   Comparison between Stationary and Crawling Multi-Arm Robotics for In-Space Assembly [J].
McBryan, Katherine .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :1849-1856