Detection of fibrotic changes in the progression of liver diseases by label-free multiphoton imaging

被引:4
作者
Huang, Xingxin [1 ]
Lian, Yuan-E [2 ]
Qiu, Lida [3 ]
Yu, XunBin [4 ]
Zhan, Zhenlin [1 ]
Zhang, Zheng [1 ]
Zhang, Xiong [1 ]
Lin, Hongxin [1 ]
Xu, Shuoyu [5 ]
Chen, Jianxin [1 ]
Bai, Yannan [6 ,7 ]
Li, Lianhuang [1 ,8 ]
机构
[1] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Fujian Prov Key Lab Photon Technol, Minist Educ, Fuzhou, Peoples R China
[2] Fujian Med Univ, Affiliated Union Hosp, Dept Pathol, Fuzhou, Peoples R China
[3] Minjiang Univ, Coll Phys & Elect Informat Engn, Fuzhou, Peoples R China
[4] Fujian Prov Hosp, Dept Pathol, Fuzhou, Peoples R China
[5] Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Guangzhou, Peoples R China
[6] Fujian Med Univ, Fujian Prov Hosp, Shengli Clin Med Coll, Dept Hepatobiliary & Pancreat Surg, Fuzhou, Peoples R China
[7] Fujian Prov Hosp, Dept Hepatobiliopancreat Surg, Fuzhou 350001, Peoples R China
[8] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; fibrotic changes; image processing; liver diseases; multiphoton microscopy; HEPATOCELLULAR-CARCINOMA; CIRRHOSIS; QUANTIFICATION; EPIDEMIOLOGY; PREDICTION; REGRESSION; FEATURES;
D O I
10.1002/jbio.202300153
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Collagen fibers play an important role in the progression of liver diseases. The formation and progression of liver fibrosis is a dynamic pathological process accompanied by morphological changes in collagen fibers. In this study, we used multiphoton microscopy for label-free imaging of liver tissues, allowing direct detection of various components including collagen fibers, tumors, blood vessels, and lymphocytes. Then, we developed a deep learning classification model to automatically identify tumor regions, and the accuracy reaches 0.998. We introduced an automated image processing method to extract eight collagen morphological features from various stages of liver diseases. Statistical analysis showed significant differences between them, indicating the potential use of these quantitative features for monitoring fibrotic changes during the progression of liver diseases. Therefore, multiphoton imaging combined with automatic image processing method would hold a promising future in rapid and label-free diagnosis of liver diseases.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Texture Analysis of Fibrous Meningioma Using Label-Free Multiphoton Microscopy
    Fang, Na
    Shi, Linjing
    Su, Xiaoli
    Chen, Rong
    Hu, Liwen
    Li, Lianhuang
    Wang, Xingfu
    Wu, Zanyi
    Chen, Jianxin
    JOURNAL OF BIOPHOTONICS, 2025, 18 (02)
  • [32] Label-free detection of residual breast cancer after neoadjuvant chemotherapy using biomedical multiphoton microscopy
    Han, Zhonghua
    Li, Lianhuang
    Kang, Deyong
    Zhan, Zhenlin
    Tu, Haohua
    Wang, Chuan
    Chen, Jianxin
    LASERS IN MEDICAL SCIENCE, 2019, 34 (08) : 1595 - 1601
  • [33] Label-Free Multiphoton Microscopy: Much More Than Fancy Images
    Borile, Giulia
    Sandrin, Deborah
    Filippi, Andrea
    Anderson, Kurt I.
    Romanato, Filippo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (05) : 1 - 20
  • [34] Label-free digital pathology by infrared imaging
    Grosserueschkamp, Frederik
    Gerwert, Klaus
    BIOMEDICAL SPECTROSCOPY AND IMAGING, 2020, 9 (1-2) : 5 - 12
  • [35] Label-free, three-dimensional multiphoton microscopy of the connective tissue in the anterior vaginal wall
    Sikora, Michal
    Scheiner, David
    Betschart, Cornelia
    Perucchini, Daniele
    Mateos, Jose Maria
    di Natale, Anthony
    Fink, Daniel
    Maake, Caroline
    INTERNATIONAL UROGYNECOLOGY JOURNAL, 2015, 26 (05) : 685 - 691
  • [36] Automated classification of pancreatic neuroendocrine tumors using label-free multiphoton microscopy and deep learning
    Guan, Shuyuan
    Daigle, Noelle
    Sawyer, Travis W.
    LABEL-FREE BIOMEDICAL IMAGING AND SENSING, LBIS 2024, 2024, 12854
  • [37] Label-free multiphoton imaging to identify two types of tumor-infiltrating lymphocytes in breast tumor microenvironment
    Wang, Wei
    Huang, Xingxin
    Guo, Wenhui
    Liu, Airong
    Han, Xiahui
    Chen, Jianhua
    Chen, Jianxin
    Kang, Deyong
    Zheng, Liqin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS X, 2020, 11553
  • [38] Rapid label-free detection of early-stage lung adenocarcinoma and tumor boundary via multiphoton microscopy
    Xi, Gangqin
    Huang, Chen
    Lin, Jie
    Luo, Tianyi
    Kang, Bingzi
    Xu, Mingyu
    Xu, Huizhen
    Li, Xiaolu
    Chen, Jianxin
    Qiu, Lida
    Zhuo, Shuangmu
    JOURNAL OF BIOPHOTONICS, 2023,
  • [39] Label-free detection of fibrillar collagen deposition associated with vascular elements in glioblastoma multiforme by using multiphoton microscopy
    Jiang, L. W.
    Wang, X. F.
    Wu, Z. Y.
    Lin, P. H.
    Du, H. P.
    Wang, S.
    Li, L. H.
    Fang, N.
    Zhuo, S. M.
    Kang, D. Z.
    Chen, J. X.
    JOURNAL OF MICROSCOPY, 2017, 265 (02) : 207 - 213
  • [40] Label-Free Multiphoton Microscopy: The Origin of Fluorophores and Capabilities for Analyzing Biochemical Processes
    E. A. Shirshin
    B. P. Yakimov
    M. E. Darvin
    N. P. Omelyanenko
    S. A. Rodionov
    Y. I. Gurfinkel
    J. Lademann
    V. V. Fadeev
    A. V. Priezzhev
    Biochemistry (Moscow), 2019, 84 : 69 - 88