Detection of fibrotic changes in the progression of liver diseases by label-free multiphoton imaging

被引:4
|
作者
Huang, Xingxin [1 ]
Lian, Yuan-E [2 ]
Qiu, Lida [3 ]
Yu, XunBin [4 ]
Zhan, Zhenlin [1 ]
Zhang, Zheng [1 ]
Zhang, Xiong [1 ]
Lin, Hongxin [1 ]
Xu, Shuoyu [5 ]
Chen, Jianxin [1 ]
Bai, Yannan [6 ,7 ]
Li, Lianhuang [1 ,8 ]
机构
[1] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Fujian Prov Key Lab Photon Technol, Minist Educ, Fuzhou, Peoples R China
[2] Fujian Med Univ, Affiliated Union Hosp, Dept Pathol, Fuzhou, Peoples R China
[3] Minjiang Univ, Coll Phys & Elect Informat Engn, Fuzhou, Peoples R China
[4] Fujian Prov Hosp, Dept Pathol, Fuzhou, Peoples R China
[5] Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Guangzhou, Peoples R China
[6] Fujian Med Univ, Fujian Prov Hosp, Shengli Clin Med Coll, Dept Hepatobiliary & Pancreat Surg, Fuzhou, Peoples R China
[7] Fujian Prov Hosp, Dept Hepatobiliopancreat Surg, Fuzhou 350001, Peoples R China
[8] Fujian Normal Univ, Coll Photon & Elect Engn, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; fibrotic changes; image processing; liver diseases; multiphoton microscopy; HEPATOCELLULAR-CARCINOMA; CIRRHOSIS; QUANTIFICATION; EPIDEMIOLOGY; PREDICTION; REGRESSION; FEATURES;
D O I
10.1002/jbio.202300153
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Collagen fibers play an important role in the progression of liver diseases. The formation and progression of liver fibrosis is a dynamic pathological process accompanied by morphological changes in collagen fibers. In this study, we used multiphoton microscopy for label-free imaging of liver tissues, allowing direct detection of various components including collagen fibers, tumors, blood vessels, and lymphocytes. Then, we developed a deep learning classification model to automatically identify tumor regions, and the accuracy reaches 0.998. We introduced an automated image processing method to extract eight collagen morphological features from various stages of liver diseases. Statistical analysis showed significant differences between them, indicating the potential use of these quantitative features for monitoring fibrotic changes during the progression of liver diseases. Therefore, multiphoton imaging combined with automatic image processing method would hold a promising future in rapid and label-free diagnosis of liver diseases.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy
    Shelton, Ryan L.
    Mattison, Scott P.
    Applegate, Brian E.
    JOURNAL OF BIOPHOTONICS, 2014, 7 (10) : 834 - 840
  • [32] Nanostructures for label-free detection and imaging of biomolecules
    Schultz, Zachary D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [33] Terahertz Imaging for Label-free Protein Detection
    Ogawa, Y.
    Hayashi, S.
    Yoshida, H.
    Otani, C.
    Kawase, K.
    2009 34TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, VOLS 1 AND 2, 2009, : 352 - +
  • [34] Label-Free Detection of Breast Phyllodes Tumors Based on Multiphoton Microscopy
    Chen, Xi
    Jiang, Junzhen
    Hu, Liwen
    Su, Xiaoli
    Zhang, Zheng
    Zhang, Xiong
    Zhong, Tao
    Huang, Jianping
    Wu, Shulian
    Liu, Lina
    Chen, Jianxin
    Zheng, Liqin
    Wang, Xingfu
    JOURNAL OF BIOPHOTONICS, 2025, 18 (01)
  • [35] Rapid, label-free detection of intracranial germinoma using multiphoton microscopy
    Fang, Na
    Wu, Zanyi
    Wang, Xingfu
    Cao, Ning
    Lin, Yuanxiang
    Li, Lianhuang
    Chen, Yupeng
    Cai, Shanshan
    Tu, Haohua
    Kang, Dezhi
    Chen, Jianxin
    NEUROPHOTONICS, 2019, 6 (03)
  • [36] Detection of HOCl-driven degradation of the pericardium scaffolds by label-free multiphoton fluorescence lifetime imaging
    B. P. Yakimov
    I. I. Vlasova
    Y. M. Efremov
    E. G. Maksimov
    E. A. Shirshin
    V. E. Kagan
    P. S. Timashev
    Scientific Reports, 12
  • [37] Detection of HOCl-driven degradation of the pericardium scaffolds by label-free multiphoton fluorescence lifetime imaging
    Yakimov, B. P.
    Vlasova, I. I.
    Efremov, Y. M.
    Maksimov, E. G.
    Shirshin, E. A.
    Kagan, V. E.
    Timashev, P. S.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] Label-free multiphoton excitation imaging as a promising diagnostic tool for breast cancer
    Matsui, Takahiro
    Iwasa, Akio
    Mimura, Masafumi
    Taniguchi, Seiji
    Sudo, Takao
    Uchida, Yutaka
    Kikuta, Junichi
    Morizono, Hidetomo
    Horii, Rie
    Motoyama, Yuichi
    Morii, Eiichi
    Ohno, Shinji
    Kiyota, Yasujiro
    Ishii, Masaru
    CANCER SCIENCE, 2022, 113 (08) : 2916 - 2925
  • [39] Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma
    Li, Lianhuang
    Han, Zhonghua
    Qiu, Lida
    Kang, Deyong
    Zhan, Zhenlin
    Tu, Haohua
    Chen, Jianxin
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2020, 16 (08): : 1376 - 1387
  • [40] Label-free imaging characteristics of colonic mucinous adenocarcinoma using multiphoton microscopy
    Liu, Nenrong
    Chen, Jianxin
    Xu, Renan
    Jiang, Shanghai
    Xu, Jian
    Chen, Rong
    SCANNING, 2013, 35 (04) : 277 - 282