Data-driven electrolyte design for lithium metal anodes

被引:101
作者
Kim, Sang Cheol [1 ]
Oyakhire, Solomon T. [2 ]
Athanitis, Constantine [1 ]
Wang, Jingyang [1 ]
Zhang, Zewen [1 ]
Zhang, Wenbo [1 ]
Boyle, David T. [3 ]
Kim, Mun Sek [1 ,2 ]
Yu, Zhiao [3 ]
Gao, Xin [1 ]
Sogade, Tomi [1 ]
Wu, Esther [1 ]
Qin, Jian [2 ]
Bao, Zhenan [2 ]
Bent, Stacey F. [2 ,4 ]
Cui, Yi [1 ,4 ,5 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
[5] Stanford Inst Mat & Energy Sci, Stanford Linear Accelerator Ctr Natl Accelerator L, Menlo Pk, CA 94025 USA
关键词
battery; energy storage; machine learning; electrolyte; COULOMBIC EFFICIENCY; HEALTH ESTIMATION; BATTERIES; ENERGY; INTERPHASES; PERFORMANCE; STATE;
D O I
10.1073/pnas.2214357120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Improving Coulombic efficiency (CE) is key to the adoption of high energy density lithium metal batteries. Liquid electrolyte engineering has emerged as a promising strategy for improving the CE of lithium metal batteries, but its complexity renders the performance prediction and design of electrolytes challenging. Here, we develop machine learning (ML) models that assist and accelerate the design of high-perfor-mance electrolytes. Using the elemental composition of electrolytes as the features of our models, we apply linear regression, random forest, and bagging models to identify the critical features for predicting CE. Our models reveal that a reduction in the solvent oxygen content is critical for superior CE. We use the ML models to design electro-lyte formulations with fluorine-free solvents that achieve a high CE of 99.70%. This work highlights the promise of data-driven approaches that can accelerate the design of high-performance electrolytes for lithium metal batteries.
引用
收藏
页数:8
相关论文
共 56 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[3]  
Alpaydin Ethem, 2017, Machine Learning New AI, V91
[4]   Nonpolar Alkanes Modify Lithium-Ion Solvation for Improved Lithium Deposition and Stripping [J].
Amanchukwu, Chibueze, V ;
Kong, Xian ;
Qin, Jian ;
Cui, Yi ;
Bao, Zhenan .
ADVANCED ENERGY MATERIALS, 2019, 9 (41)
[5]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[6]   Machine learning for continuous innovation in battery technologies [J].
Aykol, Muratahan ;
Herring, Patrick ;
Anapolsky, Abraham .
NATURE REVIEWS MATERIALS, 2020, 5 (10) :725-727
[7]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[8]  
Casella George., 2006, Springer Texts in Statistics, V102
[9]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[10]   Electrolyte design for Li metal-free Li batteries [J].
Chen, Ji ;
Li, Qin ;
Pollard, Travis P. ;
Fan, Xiulin ;
Borodin, Oleg ;
Wang, Chunsheng .
MATERIALS TODAY, 2020, 39 (39) :118-126