Fractional quantum Hall states on CP2 space

被引:0
|
作者
Wang, Jie [1 ]
Klevtsov, Semyon [2 ]
Douglas, Michael R. [3 ,4 ,5 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Strasbourg, IRMA, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[4] SUNY Stony Brook, Dept Phys, YITP, Stony Brook, NY 11790 USA
[5] SUNY Stony Brook, SCGP, Stony Brook, NY 11790 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
关键词
EDGE EXCITATIONS; FLUID;
D O I
10.1103/PhysRevResearch.5.023042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study four-dimensional fractional quantum Hall states on CP2 geometry from microscopic approaches. While in 2d the standard Laughlin wave function, given by a power of Vandermonde determinant, admits a product representation in terms of the Jastrow factor, this is no longer true in higher dimensions. In 4d, we can define two different types of Laughlin wave functions, the determinant-Laughlin and Jastrow-Laughlin states. We find that they are exactly annihilated by, respectively, two-particle and three-particle short-ranged interacting Hamiltonians. We then mainly focus on the ground state, low-energy excitations, and the quasihole degeneracy of determinant-Laughlin state. The quasihole degeneracy exhibits an anomalous counting, indicating the existence of multiple forms of quasihole wave functions. We argue that these are captured by the mathematical framework of "commutative algebra of Npoints in the plane." The microscopic wave functions and Hamiltonians studied in this work pave the way for a systematic study of a high-dimensional topological phase of matter that is potentially realizable in cold atom and optical experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] CP2 skyrmions and skyrmion crystals in realistic quantum magnets
    Zhang, Hao
    Wang, Zhentao
    Dahlbom, David
    Barros, Kipton
    Batista, Cristian D.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [42] Paired fractional quantum Hall states and the v=5/2 puzzle
    Read, N
    PHYSICA B, 2001, 298 (1-4): : 121 - 128
  • [43] Aspects of the moduli space of instantons on CP2 and its orbifolds
    Pini, Alessandro
    Rodriguez-Gomez, Diego
    PHYSICAL REVIEW D, 2016, 93 (02)
  • [44] Competing ν=5/2 fractional quantum Hall states in confined geometry
    Fu, Hailong
    Wang, Pengjie
    Shan, Pujia
    Xiong, Lin
    Pfeiffer, Loren N.
    West, Ken
    Kastner, Marc A.
    Lin, Xi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (44) : 12386 - 12390
  • [45] Fractional Quantum Hall Effect states as exact ground states
    Ghosh, RK
    Rao, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (11): : 1125 - 1134
  • [46] Unconventional Fractional Quantum Hall States in a Wide Quantum Well
    Dorozhkin, S. I.
    Kapustin, A. A.
    Fedorov, I. B.
    Umansky, V.
    Smet, J. H.
    JETP LETTERS, 2023, 117 (01) : 68 - 74
  • [47] New quantum states in the fractional quantum Hall effect regime
    Pashitskii, EA
    LOW TEMPERATURE PHYSICS, 2005, 31 (02) : 171 - 178
  • [48] Unconventional Fractional Quantum Hall States in a Wide Quantum Well
    S. I. Dorozhkin
    A. A. Kapustin
    I. B. Fedorov
    V. Umansky
    J. H. Smet
    JETP Letters, 2023, 117 : 68 - 74
  • [49] NONUNIVERSAL FRACTIONAL QUANTUM HALL STATES IN A QUANTUM-WIRE
    TOKIZAKI, S
    KURAMOTO, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (07) : 2302 - 2306
  • [50] Quantum dot dephasing by fractional quantum Hall edge states
    Nguyen, T. K. T.
    Crepieux, A.
    Jonckheere, T.
    Nguyen, A. V.
    Levinson, Y.
    Martin, T.
    PHYSICAL REVIEW B, 2006, 74 (15):