Fractional quantum Hall states on CP2 space

被引:0
|
作者
Wang, Jie [1 ]
Klevtsov, Semyon [2 ]
Douglas, Michael R. [3 ,4 ,5 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Strasbourg, IRMA, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA 02138 USA
[4] SUNY Stony Brook, Dept Phys, YITP, Stony Brook, NY 11790 USA
[5] SUNY Stony Brook, SCGP, Stony Brook, NY 11790 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
关键词
EDGE EXCITATIONS; FLUID;
D O I
10.1103/PhysRevResearch.5.023042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study four-dimensional fractional quantum Hall states on CP2 geometry from microscopic approaches. While in 2d the standard Laughlin wave function, given by a power of Vandermonde determinant, admits a product representation in terms of the Jastrow factor, this is no longer true in higher dimensions. In 4d, we can define two different types of Laughlin wave functions, the determinant-Laughlin and Jastrow-Laughlin states. We find that they are exactly annihilated by, respectively, two-particle and three-particle short-ranged interacting Hamiltonians. We then mainly focus on the ground state, low-energy excitations, and the quasihole degeneracy of determinant-Laughlin state. The quasihole degeneracy exhibits an anomalous counting, indicating the existence of multiple forms of quasihole wave functions. We argue that these are captured by the mathematical framework of "commutative algebra of Npoints in the plane." The microscopic wave functions and Hamiltonians studied in this work pave the way for a systematic study of a high-dimensional topological phase of matter that is potentially realizable in cold atom and optical experiments.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Stratification of the space of foliations on CP2
    Alcantara, Claudia R.
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 72 : 147 - 160
  • [2] Unified Fock space representation of fractional quantum Hall states
    Di Gioacchino, Andrea
    Molinari, Luca Guido
    Erba, Vittorio
    Rotondo, Pietro
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [3] THE GEOMETRY OF THE MODULI SPACE OF CP2 INSTANTONS
    GROISSER, D
    INVENTIONES MATHEMATICAE, 1990, 99 (02) : 393 - 409
  • [4] On the space of harmonic 2-spheres in CP2
    Lemaire, L
    Wood, JC
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (02) : 211 - 225
  • [5] The minimal genus problem in CP2 # CP2
    Nouh, Mohamed Ait
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 671 - 686
  • [6] Don, Cp2*Yb(bipy), and 547 Latimer Hall
    Andersen, Richard A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [7] FRACTIONAL QUANTUM HALL STATES IN GRAPHENE
    Jellal, Ahmed
    Malika, Bellati
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (01) : 143 - 164
  • [8] Magnetization of the fractional quantum Hall states
    Meinel, I
    Hengstmann, T
    Grundler, D
    Heitmann, D
    Wegscheider, W
    Bichler, M
    PHYSICAL REVIEW LETTERS, 1999, 82 (04) : 819 - 822
  • [9] On K2 of Fp [Cp2 x Cp2]
    Chen, Hong
    Gao, Yubin
    Tang, Guoping
    ALGEBRA COLLOQUIUM, 2013, 20 (04) : 681 - 688
  • [10] Fractional Quantum Hall States in a Ge Quantum Well
    Mironov, O. A.
    d'Ambrumenil, N.
    Dobbie, A.
    Leadley, D. R.
    Suslov, A. V.
    Green, E.
    PHYSICAL REVIEW LETTERS, 2016, 116 (17)