A general deep learning based framework for 3D reconstruction from multi-view stereo satellite images

被引:25
|
作者
Gao, Jian [1 ]
Liu, Jin [1 ]
Ji, Shunping [1 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, 129 Luoyu Rd, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi -view stereo; Optical satellite images; Deep learning; Dense matching; 3D reconstruction; IKONOS; MODEL;
D O I
10.1016/j.isprsjprs.2022.12.012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this paper, we propose a general deep learning based framework, named Sat-MVSF, to perform threedimensional (3D) reconstruction of the Earth's surface from multi-view optical satellite images. The framework is a complete processing pipeline, including pre-processing, a multi-view stereo (MVS) network for satellite imagery (Sat-MVSNet), and post-processing. The pre-processing handles the geometric and radiometric configuration of the multi-view images and their cropping. The cropped multi-view patches are then fed into SatMVSNet, which includes deep feature extraction, rational polynomial camera (RPC) warping, pyramid cost volume construction, regularization, and regression, to obtain the height maps. The error matches are then filtered out and a digital surface model (DSM) is generated in the post-processing. Considering the complexity and diversity of real-world scenes, we also introduce a self-refinement strategy that does not require any groundtruth labels to enhance the performance and robustness of the Sat-MVSF framework. We comprehensively compare the proposed framework with popular commercial software and open-source methods, to demonstrate the potential of the proposed deep learning framework. On the WHU-TLC dataset, where the images are captured with a three-line camera (TLC), the proposed framework outperforms all the other solutions in terms of reconstruction fineness, and also outperforms most of the other methods in terms of efficiency. On the challenging MVS3D dataset, where the images are captured by the WorldView-3 satellite at different times and seasons, the proposed framework also exceeds the existing methods when using the model pretrained on aerial images and the introduced self-refinement strategy, demonstrating a high generalization ability. We also note that the lack of training samples hinders research in this field, and the availability of more high-quality open-source training data will greatly accelerate the research into deep learning based MVS satellite image reconstruction. The code will be available at https://gpcv.whu.edu.cn/data.
引用
收藏
页码:446 / 461
页数:16
相关论文
共 50 条
  • [41] PDE-Based 3D Surface Reconstruction from Multi-View 2D Images
    Zhu, Zaiping
    Iglesias, Andres
    Zhou, Liqi
    You, Lihua
    Zhang, Jianjun
    MATHEMATICS, 2022, 10 (04)
  • [42] Research on automatic 3D reconstruction of plant phenotype based on Multi-View images
    Yang, Danni
    Yang, Huijun
    Liu, Dongfeng
    Wang, Xianlin
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 220
  • [43] SatelliteRF: Accelerating 3D Reconstruction in Multi-View Satellite Images with Efficient Neural Radiance Fields
    Zhou, Xin
    Wang, Yang
    Lin, Daoyu
    Cao, Zehao
    Li, Biqing
    Liu, Junyi
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [44] High-Quality 3D Face Reconstruction from Multi-View Images
    Cai L.
    Guo Y.
    Zhang J.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2020, 32 (02): : 305 - 314
  • [45] Reconstruction of cloud geometry from multi-view satellite images
    Seiz, G
    Davies, R
    REMOTE SENSING OF ENVIRONMENT, 2006, 100 (02) : 143 - 149
  • [46] Multi-view stereo algorithms based on deep learning: a survey
    Huang, Hongbo
    Yan, Xiaoxu
    Zheng, Yaolin
    He, Jiayu
    Xu, Longfei
    Qin, Dechun
    Multimedia Tools and Applications, 2025, 84 (06) : 2877 - 2908
  • [47] Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images
    Bi, Sai
    Xu, Zexiang
    Sunkavalli, Kalyan
    Kriegman, David
    Ramamoorthi, Ravi
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5959 - 5968
  • [48] Overview of 3D Reconstruction Methods Based on Multi-view
    Li, Mengxin
    Zheng, Dai
    Zhang, Rui
    Yin, Jiadi
    Tian, Xiangqian
    2015 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS IHMSC 2015, VOL II, 2015,
  • [49] 3D Reconstruction for Multi-view Objects
    Yu, Jun
    Yin, Wenbin
    Hu, Zhiyi
    Liu, Yabin
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [50] Multi-view 3D Reconstruction with Transformers
    Wang, Dan
    Cui, Xinrui
    Chen, Xun
    Zou, Zhengxia
    Shi, Tianyang
    Salcudean, Septimiu
    Wang, Z. Jane
    Ward, Rabab
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5702 - 5711