Silica-modulated Cu-ZnO-Al2O3 catalyst for efficient hydrogenation of CO2 to methanol

被引:21
作者
Li, Hangjie [1 ]
Wang, Liang [1 ]
Xiao, Feng-Shou [1 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
关键词
Copper catalyst; Silica promoter; Hydrogenation of CO 2 to methanol; Catalyst stability; CU-ZNO SYSTEM; CU/SIO2; CATALYSTS; CU/ZNO/ZRO2; OXIDE CARRIERS; CONVERSION; FUNCTIONALITY; PERFORMANCE; SITES;
D O I
10.1016/j.cattod.2023.114051
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Cu/ZnO/Al2O3 catalyst has been widely studied in the hydrogenation of CO2 to methanol, but it still suffers from insufficient catalyst stability and methanol selectivity. Herein, we overcome these issues by introducing the silica promoter to the catalyst, achieving the Cu/ZnO/Al2O3/SiO2 (CZAS) catalysts with significantly improved methanol selectivity and catalyst durability. Characterizations of samples showed that the silica species effi-ciently hindered the sintering of Cu nanoparticles during the catalysis, exhibiting constant performances in the continuous tests. In addition, the silica also electronically modulated the Cu nanoparticles that result in abundant Cu delta+ species in the catalyst, which minimized the methanol decomposition to improve the methanol selectivity, compared with the silica-free Cu/ZnO/Al2O3 catalyst. As a result, the CZAS exhibited CO2 conversion at 12.6 % and methanol selectivity at 85.1 %, giving a one-pass methanol yield at 10.7 %. The strategy in this work might provide an efficient route for enhancing the current industrial catalysts.
引用
收藏
页数:9
相关论文
共 43 条
[1]   How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol [J].
Arena, F. ;
Mezzatesta, G. ;
Zafarana, G. ;
Trunfio, G. ;
Frusteri, F. ;
Spadaro, L. .
CATALYSIS TODAY, 2013, 210 :39-46
[2]   Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation [J].
Arena, Francesco ;
Mezzatesta, Giovanni ;
Zafarana, Giovanni ;
Trunfio, Giuseppe ;
Frusteri, Francesco ;
Spadaro, Lorenzo .
JOURNAL OF CATALYSIS, 2013, 300 :141-151
[3]   Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure [J].
Bansode, Atul ;
Tidona, Bruno ;
von Rohr, Philipp Rudolf ;
Urakawa, Atsushi .
CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (03) :767-778
[4]   CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods [J].
Cai, Weijie ;
Ramirez de la Piscina, Pilar ;
Toyir, Jamil ;
Homs, Narcis .
CATALYSIS TODAY, 2015, 242 :193-199
[5]   Structure-Performance Correlations over Cu/ZnO Interface for Low-Temperature Methanol Synthesis from Syngas Containing CO2 [J].
Chen, Fei ;
Zhang, Peipei ;
Xiao, Liwei ;
Liang, Jiaming ;
Zhang, Baizhang ;
Zhao, Heng ;
Kosol, Rungtiwa ;
Ma, Qingxiang ;
Chen, Jienan ;
Peng, Xiaobo ;
Yang, Guohui ;
Tsubaki, Noritatsu .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (07) :8191-8205
[6]   Direct conversion of CO2 into methanol over promoted indium oxide-based catalysts [J].
Chou, Chen-Yu ;
Lobo, Raul F. .
APPLIED CATALYSIS A-GENERAL, 2019, 583
[7]   CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method [J].
Dong, Xiaosu ;
Li, Feng ;
Zhao, Ning ;
Xiao, Fukui ;
Wang, Junwei ;
Tan, Yisheng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 191 :8-17
[8]   Direct Production of Lower Olefins from CO2 Conversion via Bifunctional Catalysis [J].
Gao, Peng ;
Dang, Shanshan ;
Li, Shenggang ;
Bu, Xianni ;
Liu, Ziyu ;
Qiu, Minghuang ;
Yang, Chengguang ;
Wang, Hui ;
Zhong, Liangshu ;
Han, Yong ;
Liu, Qiang ;
Wei, Wei ;
Sun, Yuhan .
ACS CATALYSIS, 2018, 8 (01) :571-578
[9]   Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol [J].
Gao, Peng ;
Zhong, Liangshu ;
Zhang, Lina ;
Wang, Hui ;
Zhao, Ning ;
Wei, Wei ;
Sun, Yuhan .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (09) :4365-4377
[10]   Capsule-like zeolite catalyst fabricated by solvent-free strategy for para-Xylene formation from CO2 hydrogenation [J].
Gao, Weizhe ;
Guo, Lisheng ;
Wu, Qinming ;
Wang, Chengwei ;
Guo, Xiaoyu ;
He, Yingluo ;
Zhang, Peipei ;
Yang, Guohui ;
Liu, Guangbo ;
Wu, Jinhu ;
Tsubaki, Noritatsu .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 303