Enhanced Frequency-Constrained Unit Commitment Considering Variable-Droop Frequency Control From Converter-Based Generator

被引:31
作者
Yuan, Yiping [1 ]
Zhang, Yao [1 ]
Wang, Jianxue [1 ]
Liu, Zhou [2 ]
Chen, Zhe [3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Siemens Gamesa Renewable Energy A S, Siemens Gamesa Res Profess, DK-7330 Copenhagen, Denmark
[3] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark
基金
中国国家自然科学基金;
关键词
Generators; Frequency conversion; Power system dynamics; Frequency control; Load modeling; Frequency response; Dispatching; Frequency-constrained unit commitment; variable-droop frequency control; converter-based generators; frequency reserve; mixed-integer linearized constraint; OPTIMAL POWER-FLOW; INERTIAL RESPONSE; SYNTHETIC INERTIA; PROVISION; MODEL; DFIG; PENETRATION; STORAGE; IMPACT; LOAD;
D O I
10.1109/TPWRS.2022.3170935
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To improve the frequency stability of power systems with a high penetration of converter-based generators, this paper proposes an Enhanced Frequency-Constrained Unit Commitment (E-FCUC) considering variable-droop-controlled Frequency Control (FC) from converter-based generators. Unlike previous studies emphasizing conventional and fix-droop converter-based generators participating in primary frequency response, the impact of converter-based generators with variable-droop FC (VD-FC) is investigated, modeled, and then incorporated into the UC problems. Firstly, the transfer function of variable-droop-controlled converter-based generators is modeled; the available primary power reserves bounding provided by converter-based generators is analyzed. Secondly, the frequency dynamic of power systems considering joint frequency control from conventional generators and variable-droop-controlled converter-based generators is derived based on an analytical aggregated System Frequency Response (SFR) model. Since the nonlinear non-smooth feature of obtained frequency dynamic function, the "max-affine" Piece-Wise-Linearization method (PWL) is adopted here to fit the calculated frequency function. The fitting function is subsequently reformulated into mix-integer linearized constraints participating in UC studies. Case studies based on a modified IEEE 6 bus test system and a modified IEEE 118 bus test system are carried out to verify the effectiveness of the proposed E-FCUC through comparisons of results with existing empirical models.
引用
收藏
页码:1094 / 1110
页数:17
相关论文
共 60 条
[1]   Security-Constrained Unit Commitment With Linearized System Frequency Limit Constraints [J].
Ahmadi, Hamed ;
Ghasemi, Hassan .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) :1536-1545
[2]   Probabilistic Under Frequency Load Shedding Considering RoCoF Relays of Distributed Generators [J].
Amraee, Turaj ;
Darebaghi, Mohammad Ghaderi ;
Soroudi, Alireza ;
Keane, Andrew .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2018, 33 (04) :3587-3598
[3]   A LOW-ORDER SYSTEM FREQUENCY-RESPONSE MODEL [J].
ANDERSON, PM ;
MIRHEYDAR, M .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1990, 5 (03) :720-729
[4]  
[Anonymous], 2016, Technical Regulation 3.2.2 for PV Power Plants above 11 kW
[5]  
Australian Energy Market Commission, FAST FREQUENCY RESPO
[6]   A Novel Approximation of Security-Constrained Optimal Power Flow With Incorporation of Generator Frequency and Voltage Control Response [J].
Avramidis, Iason-Iraklis ;
Capitanescu, Florin ;
Karagiannopoulos, Stavros ;
Vrettos, Evangelos .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) :2438-2447
[7]  
Banik S., 2021, 2021 IEEE PES INN SM, P1, DOI [10.1109/ISGTLatinAmerica52371.2021.9542998, DOI 10.1109/ISGTLATINAMERICA52371.2021.9542998]
[8]  
Brito M, 2018, IEEE POW ENER SOC GE
[9]   Governor Rate-Constrained OPF for Primary Frequency Control Adequacy [J].
Chavez, Hector ;
Baldick, Ross ;
Sharma, Sandip .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (03) :1473-1480
[10]   Towards Optimal System Scheduling With Synthetic Inertia Provision From Wind Turbines [J].
Chu, Zhongda ;
Markovic, Uros ;
Hug, Gabriela ;
Teng, Fei .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (05) :4056-4066