An Attachable Fractional Divider Transforming an Integer-N PLL Into a Fractional-N PLL Achieving Only 0.35-psrms-Integrated-Jitter Degradation With SSC Capability

被引:2
作者
Motozawa, Atsushi [1 ]
Hiraku, Yasuyuki [1 ]
Hirai, Yoshitaka [1 ]
Hiyama, Naoaki [1 ]
Imanaka, Yusuke [1 ]
Morishita, Fukashi [1 ]
机构
[1] Renesas Elect Corp, IoT & Infrastruct Business Unit, Tokyo 1878588, Japan
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2023年 / 6卷
关键词
Phase locked loops; Voltage-controlled oscillators; Clocks; Generators; Global navigation satellite system; Pulse generation; Industries; Electromagnetic interference (EMI); fractional divider (FDIV); fractional spur; fractional-N PLL (Frac-N PLL); integer-N PLL (Int-N PLL); phase interpolator (PI); spread-spectrum clocking (SSC);
D O I
10.1109/LSSC.2023.3254521
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Phase-locked loops (PLLs) are utilized in SoCs for the automotive industry. In the industry, the system handles with satellite signals which are weak radio waves coming from space. Therefore, the output frequency of PLLs is carefully designed to avoid electromagnetic interference (EMI). Recently, the global navigation satellite system (GNSS) is becoming more common and available frequency bands for clocks are getting narrow. That leads, in many products, replacement integer-N PLLs (Int-N PLLs) with fractional-N PLLs (Frac-N PLLs) are needed to obtain smaller output frequency steps than reference frequency. The attachable fractional divider proposed in this letter transforms an Int-N PLL into a Frac-N PLL with only 0.35 psrms of integrated RMS jitter degradation.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 13 条
  • [1] Agrawal A., 2012, 2012 IEEE International Solid-State Circuits Conference (ISSCC), P134, DOI 10.1109/ISSCC.2012.6176951
  • [2] A 529-μW Fractional-N All-Digital PLL Using TDC Gain Auto-Calibration and an Inverse-Class-F DCO in 65-nm CMOS
    Chen, Peng
    Meng, Xi
    Yin, Jun
    Mak, Pui-In
    Martins, Rui P.
    Staszewski, Robert Bogdan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (01) : 51 - 63
  • [3] Hwang Chanwoong, 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC), P378, DOI 10.1109/ISSCC42614.2022.9731646
  • [4] Kao TK, 2013, ISSCC DIG TECH PAP I, V56, P416, DOI 10.1109/ISSCC.2013.6487795
  • [5] Kundu Somnath, 2022, 2022 IEEE International Solid- State Circuits Conference (ISSCC), P144, DOI 10.1109/ISSCC42614.2022.9731560
  • [6] Michel J.-Y., 1999, Twelfth Annual IEEE International ASIC/SOC Conference (Cat. No.99TH8454), P362, DOI 10.1109/ASIC.1999.806535
  • [7] A 3.2-to-3.8 GHz Harmonic-Mixer-Based Dual-Feedback Fractional-N PLL Achieving-65 dBc In-Band Fractional Spur
    Osada, Masaru
    Xu, Zule
    Iizuka, Tetsuya
    [J]. IEEE SOLID-STATE CIRCUITS LETTERS, 2020, 3 (03): : 534 - 537
  • [8] Prinzie J., 2020, IEEE SOLID STATE CIR, V3, P546
  • [9] A 1.3-cycle lock time, non-PLL/DLL clock multiplier based on direct clock cycle interpolation for "clock on demand"
    Saeki, T
    Mitsuishi, M
    Iwaki, H
    Tagishi, M
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2000, 35 (11) : 1581 - 1590
  • [10] Shen ZK, 2019, IEEE ASIAN SOLID STA, P287, DOI [10.1109/A-SSCC47793.2019.9056984, 10.1109/a-sscc47793.2019.9056984]