Soft robotics towards sustainable development goals and climate actions

被引:14
作者
Giordano, Goffredo [1 ,2 ]
Murali Babu, Saravana Prashanth [3 ]
Mazzolai, Barbara [1 ]
机构
[1] Ist Italiano Tecnol IIT, Bioinspired Soft Robot, Genoa, Italy
[2] Politecn Barit, Dept Mech Math & Management, Bari, Italy
[3] Univ Southern Denmark, Maersk McKinney Moller Inst, SDU Soft Robot, SDU Biorobot, Odense, Denmark
来源
FRONTIERS IN ROBOTICS AND AI | 2023年 / 10卷
基金
欧洲研究理事会;
关键词
smart material robotics; sustainable development goals; biodegradable materials; physical intelligence; green energy; field deployable robotics; DESIGN;
D O I
10.3389/frobt.2023.1116005
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Soft robotics technology can aid in achieving United Nations' Sustainable Development Goals (SDGs) and the Paris Climate Agreement through development of autonomous, environmentally responsible machines powered by renewable energy. By utilizing soft robotics, we can mitigate the detrimental effects of climate change on human society and the natural world through fostering adaptation, restoration, and remediation. Moreover, the implementation of soft robotics can lead to groundbreaking discoveries in material science, biology, control systems, energy efficiency, and sustainable manufacturing processes. However, to achieve these goals, we need further improvements in understanding biological principles at the basis of embodied and physical intelligence, environment-friendly materials, and energy-saving strategies to design and manufacture self-piloting and field-ready soft robots. This paper provides insights on how soft robotics can address the pressing issue of environmental sustainability. Sustainable manufacturing of soft robots at a large scale, exploring the potential of biodegradable and bioinspired materials, and integrating onboard renewable energy sources to promote autonomy and intelligence are some of the urgent challenges of this field that we discuss in this paper. Specifically, we will present field-ready soft robots that address targeted productive applications in urban farming, healthcare, land and ocean preservation, disaster remediation, and clean and affordable energy, thus supporting some of the SDGs. By embracing soft robotics as a solution, we can concretely support economic growth and sustainable industry, drive solutions for environment protection and clean energy, and improve overall health and well-being.
引用
收藏
页数:10
相关论文
共 139 条
[1]   Automation and New Tasks: How Technology Displaces and Reinstates Labor [J].
Acemoglu, Daron ;
Restrepo, Pascual .
JOURNAL OF ECONOMIC PERSPECTIVES, 2019, 33 (02) :3-29
[2]   Soft Robotics Commercialization: Jamming Grippers from Research to Product [J].
Amend, John ;
Cheng, Nadia ;
Fakhouri, Sami ;
Culley, Bill .
SOFT ROBOTICS, 2016, 3 (04) :213-222
[3]   The soft touch of robots [J].
不详 .
NATURE REVIEWS MATERIALS, 2018, 3 (06) :71-71
[4]   Soft Robots for Ocean Exploration and Offshore Operations: A Perspective [J].
Aracri, Simona ;
Giorgio-Serchi, Francesco ;
Suaria, Giuseppe ;
Sayed, Mohammed E. ;
Nemitz, Markus P. ;
Mahon, Stephen ;
Stokes, Adam A. .
SOFT ROBOTICS, 2021, 8 (06) :625-639
[5]   Multiple climate change-driven tipping points for coastal systems [J].
Barnard, Patrick L. ;
Dugan, Jenifer E. ;
Page, Henry M. ;
Wood, Nathan J. ;
Hart, Juliette A. Finzi ;
Cayan, Daniel R. ;
Erikson, Li H. ;
Hubbard, David M. ;
Myers, Monique R. ;
Melack, John M. ;
Iacobellis, Sam F. .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Tuning the Release Force of Microfibrillar Adhesives by Geometric Design [J].
Barnefske, Lena ;
Rundel, Fabian ;
Moh, Karsten ;
Hensel, Rene ;
Zhang, Xuan ;
Arzt, Eduard .
ADVANCED MATERIALS INTERFACES, 2022, 9 (33)
[7]   3D Laser Micro- and Nanoprinting: Challenges for Chemistry [J].
Barner-Kowollik, Christopher ;
Bastmeyer, Martin ;
Blasco, Eva ;
Delaittre, Guillaume ;
Mueller, Patrick ;
Richter, Benjamin ;
Wegener, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (50) :15828-15845
[8]   Combating ecosystem collapse from the tropics to the Antarctic [J].
Bergstrom, Dana M. ;
Wienecke, Barbara C. ;
van den Hoff, John ;
Hughes, Lesley ;
Lindenmayer, David B. ;
Ainsworth, Tracy D. ;
Baker, Christopher M. ;
Bland, Lucie ;
Bowman, David M. J. S. ;
Brooks, Shaun T. ;
Canadell, Josep G. ;
Constable, Andrew J. ;
Dafforn, Katherine A. ;
Depledge, Michael H. ;
Dickson, Catherine R. ;
Duke, Norman C. ;
Helmstedt, Kate J. ;
Holz, Andres ;
Johnson, Craig R. ;
McGeoch, Melodie A. ;
Melbourne-Thomas, Jessica ;
Morgain, Rachel ;
Nicholson, Emily ;
Prober, Suzanne M. ;
Raymond, Ben ;
Ritchie, Euan G. ;
Robinson, Sharon A. ;
Ruthrof, Katinka X. ;
Setterfield, Samantha A. ;
Sgro, Carla M. ;
Stark, Jonathan S. ;
Travers, Toby ;
Trebilco, Rowan ;
Ward, Delphi F. L. ;
Wardle, Glenda M. ;
Williams, Kristen J. ;
Zylstra, Phillip J. ;
Shaw, Justine D. .
GLOBAL CHANGE BIOLOGY, 2021, 27 (09) :1692-1703
[9]  
Bierman DM, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.68, 10.1038/NENERGY.2016.68]
[10]   A field-tested robotic harvesting system for iceberg lettuce [J].
Birrell, Simon ;
Hughes, Josie ;
Cai, Julia Y. ;
Iida, Fumiya .
JOURNAL OF FIELD ROBOTICS, 2020, 37 (02) :225-245