Schur m-power convexity for general geometric Bonferroni mean of multiple parameters and comparison inequalities between several means

被引:3
作者
Wu, Yi-Ting [1 ]
Qi, Feng [2 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Henan Polytech Univ, Inst Math, Jiaozuo 454010, Henan, Peoples R China
关键词
General geometric Bonferroni mean; inequality; majorization; Schur convexity; Schur m-power convexity;
D O I
10.1515/ms-2023-0002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the authors present the Schur m-power convexity and concavity for the general geometric Bonferroni mean of multiple parameters and establish comparison inequalities for bounding the general geometric Bonferroni mean in terms of the arithmetic, geometric, and harmonic means. These Schur convexity and concavity provide a unified generalization of the Schur convexity and concavity for the geometric Bonferroni means of two or three parameters.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 42 条
[1]   Generalized Bonferroni mean operators in multi-criteria aggregation [J].
Beliakov, Gleb ;
James, Simon ;
Mordelova, Juliana ;
Rueckschlossova, Tatiana ;
Yager, Ronald R. .
FUZZY SETS AND SYSTEMS, 2010, 161 (17) :2227-2242
[2]  
Bonferroni C., 1950, Boll. Unione Mat. Ital., V5, P267
[3]  
Chu Y. M., 2010, Proceedengs of A.Razmadze Mathematical Institute, V152, P19
[4]  
Chu YM, 2008, J CONVEX ANAL, V15, P707
[5]   Aggregation of Heterogeneously Related Information with Extended Geometric Bonferroni Mean and Its Application in Group Decision Making [J].
Dutta, Bapi ;
Chan, Felix T. S. ;
Guha, Debashree ;
Niu, Ben ;
Ruan, J. H. .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (03) :487-513
[6]   SCHUR-CONVEXITY OF THE GENERALIZED HERONIAN MEANS INVOLVING TWO POSITIVE NUMBERS [J].
Fu, Li-Li ;
Xi, Bo-Yan ;
Srivastava, H. M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06) :2721-2731
[7]   The linear assignment method for multicriteria group decision making based on interval-valued Pythagorean fuzzy Bonferroni mean [J].
Liang, Decui ;
Darko, Adjei Peter ;
Xu, Zeshui ;
Quan, Wei .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2018, 33 (11) :2101-2138
[8]   Two-dimensional uncertain linguistic generalized normalized weighted geometric Bonferroni mean and its application to multiple-attribute decision making [J].
Liu, P. .
SCIENTIA IRANICA, 2018, 25 (01) :450-465
[9]  
Marshall AW, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-0-387-68276-1
[10]  
Niculescu C.P., 2018, CMS BOOKS MATH, V2nd, DOI DOI 10.1007/978-3-319-78337-6