A High-Q Terahertz Metamaterials Absorber for Refractive Index Sensing

被引:3
作者
Bai, Jinjun [1 ,2 ]
Shen, Pengyan [1 ]
Wang, Shasha [1 ]
Xu, Wei [1 ,2 ]
Shen, Wei [1 ]
Chang, Shengjiang [3 ,4 ]
机构
[1] Tiangong Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Tianjin Key Lab Optoelect Detect Technol & Syst, Tianjin 300387, Peoples R China
[3] Nankai Univ, Inst Modern Opt, Tianjin 300350, Peoples R China
[4] Nankai Univ, Tianjin Key Lab Optoelect Sensor, Sensing Network Technol, Tianjin 300350, Peoples R China
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2023年 / 260卷 / 03期
基金
中国博士后科学基金;
关键词
high-Q sensors; metamaterials absorber; reflective sensors; refractive-index sensing; terahertz; PERFECT ABSORBER; METASURFACES; SENSITIVITY; SENSOR;
D O I
10.1002/pssb.202200444
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Herein, a high-Q terahertz metamaterials perfect absorber is proposed. The absorption, physical mechanism, and refractive index sensing are investigated by using the finite element method. The results indicate that for B-mode and D-mode, the Q values are as high as 1160.41 and 1276.31, which are at least one order of magnitude higher than previously reported. The sensitivity S and the figure of merit (FOM) are 1078.00 GHz RIU-1, 170.03 and 518.00 GHz RIU-1, 75.29, respectively. It can be seen that the B-mode is more suitable for sensing application than the D-mode. The effective sensitivity S-eff is presented to characterize the effect of the analyte thickness h on the sensing sensitivity. The study finds that the S-eff of the B-mode is greater than one when h is in the range of 9-10 mu m, namely, the sensor has the highest sensitivity. In view of the aforementioned advantages, the proposed sensor has potential applications in nondestructive testing and biosensors.
引用
收藏
页数:6
相关论文
共 48 条
[41]   Asymmetric transmission and optical rotation of a quasi-3D asymmetric metallic structure [J].
Wu, Shan ;
Xu, Su ;
Zhang, Yi ;
Wu, Yanning ;
Jiang, Jianjuan ;
Wang, Qianjin ;
Zhang, Xuejin ;
Zhu, Yongyuan .
OPTICS LETTERS, 2014, 39 (22) :6426-6429
[42]  
Xin Y., 2018, BIOSENS BIOELECTRON, V126, P485
[43]   Mechanisms and applications of terahertz metamaterial sensing: a review [J].
Xu, Wendao ;
Xie, Lijuan ;
Ying, Yibin .
NANOSCALE, 2017, 9 (37) :13864-13878
[44]   Terahertz Plasmonic Structure With Enhanced Sensing Capabilities [J].
Yahiaoui, Riad ;
Strikwerda, Andrew C. ;
Jepsen, Peter Uhd .
IEEE SENSORS JOURNAL, 2016, 16 (08) :2484-2488
[45]   An ultrahigh Q-factor dual-band terahertz perfect absorber with a dielectric grating slit waveguide for sensing [J].
Yan, Fei ;
Li, Qi ;
Tian, Hao ;
Wang, Zewen ;
Li, Li .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (23)
[46]   High-sensitivity and label-free identification of a transgenic genome using a terahertz meta-biosensor [J].
Yang, Yuping ;
Xu, Dongqian ;
Zhang, Weili .
OPTICS EXPRESS, 2018, 26 (24) :31589-31598
[47]   High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor [J].
Zhao, Rong ;
Zou, Bin ;
Zhang, Guling ;
Xu, Dongqian ;
Yang, Yuping .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (19)
[48]   Photonic Crystal Resonator in the Millimeter/Terahertz Range as a Thin Film Sensor for Future Biosensor Applications [J].
Zhao, Yixiong ;
Vora, Kunj ;
Liu, Xuan ;
vom Bogel, Gerd ;
Seidl, Karsten ;
Balzer, Jan C. .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2022, 43 (5-6) :426-444