Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy

被引:53
|
作者
Ashrafizadeh, Milad [1 ]
Hushmandi, Kiavash [2 ]
Mirzaei, Sepideh [3 ]
Bokaie, Saied [2 ]
Bigham, Ashkan [4 ]
Makvandi, Pooyan [5 ]
Rabiee, Navid [6 ]
Thakur, Vijay Kumar [7 ,8 ]
Kumar, Alan Prem [9 ,10 ]
Sharifi, Esmaeel [11 ]
Varma, Rajender S. [12 ]
Aref, Amir Reza [13 ,14 ]
Wojnilowicz, Marcin [15 ,16 ]
Zarrabi, Ali [17 ]
Karimi-Maleh, Hassan [18 ,19 ,20 ]
Voelcker, Nicolas H. [15 ,16 ,21 ]
Mostafavi, Ebrahim [22 ,23 ]
Orive, Gorka [24 ,25 ,26 ,27 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Univ Caddesi, Istanbul, Turkey
[2] Univ Tehran, Fac Vet Med, Div Epidemiol, Dept Food Hyg & Qual Control, Tehran, Iran
[3] Islamic Azad Univ, Fac Sci, Dept Biol, Sci & Res Branch, Tehran, Iran
[4] Natl Res Council IPCB CNR, Inst Polymers Composites & Biomat, Naples, Italy
[5] Ist Italiano Tecnol, Ctr Mat Interfaces, Viale Rinaldo Piaggio 34, I-56025 Pisa, Italy
[6] Macquarie Univ, Sch Engn, Sydney, NSW, Australia
[7] Univ Petr & Energy Studies UPES, Sch Engn, Dehra Dun, Uttarakhand, India
[8] Scotlands Rural Coll SRUC, Biorefining & Adv Mat Res Ctr, Edinburgh, Midlothian, Scotland
[9] Natl Univ Singapore, NUS Ctr Canc Res N2CR, Yong Loo Lin Sch Med, Singapore, Singapore
[10] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Pharmacol, Singapore, Singapore
[11] Hamadan Univ Med Sci, Sch Adv Med Sci & Technol, Dept Tissue Engn & Biomat, Hamadan, Hamadan, Iran
[12] Palacky Univ, Czech Adv Technol & Res Inst, Reg Ctr Adv Technol & Mat, Olomouc, Czech Republic
[13] Harvard Med Sch, Dana Farber Canc Inst, Belfer Ctr Appl Canc Sci, Boston, MA 02115 USA
[14] Xsphera Biosci Inc, Boston, MA USA
[15] Commonwealth Sci & Ind Res Org CSIRO Mfg, Clayton, Vic, Australia
[16] Monash Inst Pharmaceut Sci, Parkville, Vic 3052, Australia
[17] Istinye Univ, Fac Engn & Nat Sci, Dept Biomed Engn, Istanbul, Turkey
[18] Univ Elect Sci & Technol China, Sch Resources & Environm, Chengdu, Peoples R China
[19] Quchan Univ Technol, Dept Chem Engn, Quchan, Iran
[20] Univ Johannesburg, Dept Chem Sci, Doornfontein Campus, Johannesburg, South Africa
[21] Australian Natl Fabricat Facil, Victorian Node, Melbourne Ctr Nanofabricat, Clayton, Vic, Australia
[22] Stanford Univ, Stanford Cardiovasc Inst, Sch Med, Stanford, CA 94305 USA
[23] Stanford Univ, Dept Med, Sch Med, Stanford, CA 94305 USA
[24] Univ Basque Country, UPV EHU, Sch Pharm, NanoBioCel Res Grp, Vitoria, Spain
[25] Univ Basque Country, Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria, Spain
[26] Bioaraba, NanoBioCel Res Grp, Vitoria, Spain
[27] Singapore Eye Res Inst, Singapore, Singapore
关键词
chitosan; drug resistance; gene therapy; stimuli-responsive nanocarriers; synergistic therapy; RESPONSIVE DRUG-DELIVERY; ENHANCED ANTICANCER EFFICACY; DOUBLE-WALLED MICROSPHERES; METAL-ORGANIC FRAMEWORK; EFFECTIVE CO-DELIVERY; COMBINED GENE-THERAPY; BREAST-CANCER; IN-VITRO; CONTROLLED-RELEASE; GRAPHENE OXIDE;
D O I
10.1002/btm2.10325
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Progress in chitosan-based vaccine delivery systems
    Esmaeili, F.
    Heuking, S.
    Junginger, H. E.
    Borchard, G.
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2010, 20 (01) : 53 - 61
  • [32] Chitosan-Based Theranostics for Cancer Therapy
    Soubhagya, A. S.
    Prabaharan, M.
    CHITOSAN FOR BIOMATERIALS IV: BIOMEDICAL APPLICATIONS, 2021, 288 : 271 - 292
  • [33] Advanced nanoscale drug delivery systems for bone cancer therapy
    Amiryaghoubi, Nazanin
    Fathi, Marziyeh
    Barar, Jaleh
    Omidian, Hossein
    Omidi, Yadollah
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2023, 1869 (06):
  • [34] Chitosan-Based Nanoparticles in Cancer Therapy
    Lakshmanan, Vinoth-Kumar
    Snima, K. S.
    Bumgardner, Joel D.
    Nair, Shantikumar V.
    Jayakumar, Rangasamy
    CHITOSAN FOR BIOMATERIALS I, 2011, 243 : 55 - 91
  • [35] Overview of chitosan-based nanosystems for prostate cancer therapy
    de Araujo, Jennifer Thayanne Cavalcante
    Tavares Junior, Alberto Gomes
    Di Filippo, Leonardo Delello
    Duarte, Jonatas Lobato
    Ribeiro, Tais de Cassia
    Chorilli, Marlus
    EUROPEAN POLYMER JOURNAL, 2021, 160
  • [36] Chitosan-based composite hydrogels for biomedical applications
    Wu, Tepeng
    Li, Yi
    Lee, Doo Sung
    MACROMOLECULAR RESEARCH, 2017, 25 (06) : 480 - 488
  • [37] Multi-functional chitosan-based smart hydrogels mediated biomedical application
    Mu, Min
    Li, Xiaoling
    Tong, Aiping
    Guo, Gang
    EXPERT OPINION ON DRUG DELIVERY, 2019, 16 (03) : 239 - 250
  • [38] Recent Advances in Chitosan-Based Carriers for Gene Delivery
    Cao, Ye
    Tan, Yang Fei
    Wong, Yee Shan
    Liew, Melvin Wen Jie
    Venkatraman, Subbu
    MARINE DRUGS, 2019, 17 (06)
  • [39] Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review
    Hu, Qiaobin
    Luo, Yangchao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 179 : 125 - 135
  • [40] Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells
    Alinejad, Vahideh
    Somi, Mohammad Hossein
    Baradaran, Behzad
    Akbarzadeh, Parvin
    Atyabi, Fatemeh
    Kazerooni, Hanif
    Kafil, Hosein Samadi
    Maleki, Leili Aghebati
    Mansouri, Homayoon Siah
    Yousefi, Mehdi
    BIOMEDICINE & PHARMACOTHERAPY, 2016, 83 : 229 - 240