Reconstruction of Twisted Steinberg Algebras

被引:4
作者
Armstrong, Becky [1 ]
de Castro, Gilles G. [3 ]
Clark, Lisa Orloff [2 ]
Courtney, Kristin [1 ]
Lin, Ying-Fen [4 ]
McCormick, Kathryn [5 ]
Ramagge, Jacqui [6 ]
Sims, Aidan [7 ]
Steinberg, Benjamin [8 ]
机构
[1] WWU Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
[3] Univ Fed Santa Catarina, Dept Matemat, BR-88040900 Florianopolis, SC, Brazil
[4] Queens Univ Belfast, Math Sci Res Ctr, Belfast BT7 1NN, Antrim, North Ireland
[5] Calif State Univ Long Beach, Dept Math & Stat, 1250 Bellflower Blvd Long Beach, Long Beach, CA 90840 USA
[6] Univ Durham, Fac Sci, Durham DH1 3LE, England
[7] Univ Wollongong, Sch Math & Appl Stat, Northfields Ave, Wollongong, NSW 2522, Australia
[8] CUNY City Coll, Dept Math, Convent Ave,138th St, New York, NY 10031 USA
基金
澳大利亚研究理事会;
关键词
ERGODIC EQUIVALENCE-RELATIONS; CARTAN SUBALGEBRAS; ETALE GROUPOIDS; FULL GROUPS; COHOMOLOGY; SIMPLICITY; SHIFTS;
D O I
10.1093/imrn/rnab291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to recover a discrete twist over an ample Hausdorff groupoid from a pair consisting of an algebra and what we call a quasi-Cartan subalgebra. We identify precisely which twists arise in this way (namely, those that satisfy the local bisection hypothesis), and we prove that the assignment of twisted Steinberg algebras to such twists and our construction of a twist from a quasi-Cartan pair are mutually inverse. We identify the algebraic pairs that correspond to effective groupoids and to principal groupoids. We also indicate the scope of our results by identifying large classes of twists for which the local bisection hypothesis holds automatically.
引用
收藏
页码:2474 / 2542
页数:69
相关论文
共 61 条
  • [1] The Leavitt path algebra of a graph
    Abrams, G
    Pino, GA
    [J]. JOURNAL OF ALGEBRA, 2005, 293 (02) : 319 - 334
  • [2] Nonstable K-theory for graph algebras
    Ara, P.
    Moreno, M. A.
    Pardo, E.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) : 157 - 178
  • [3] Reconstruction of graded groupoids from graded Steinberg algebras
    Ara, Pere
    Bosa, Joan
    Hazrat, Roozbeh
    Sims, Aidan
    [J]. FORUM MATHEMATICUM, 2017, 29 (05) : 1023 - 1037
  • [4] Armstrong B., ARXIV
  • [5] Twisted Steinberg algebras
    Armstrong, Becky
    Clark, Lisa Orloff
    Courtney, Kristin
    Lin, Ying-Fen
    McCormick, Kathryn
    Ramagge, Jacqui
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (03)
  • [6] Atiyah M.F., 1969, INTRO COMMUTATIVE AL
  • [7] BERBERIAN S.K, 1972, GRUND MATH WISS, V195
  • [8] Bice, 2021, ARXIV
  • [9] General non-commutative locally compact locally Hausdorff Stone duality
    Bice, Tristan
    Starling, Charles
    [J]. ADVANCES IN MATHEMATICS, 2019, 341 : 40 - 91
  • [10] Simplicity of algebras associated to ,tale groupoids
    Brown, Jonathan
    Clark, Lisa Orloff
    Farthing, Cynthia
    Sims, Aidan
    [J]. SEMIGROUP FORUM, 2014, 88 (02) : 433 - 452