Forecasting Loan Default in Europe with Machine Learning*

被引:21
作者
Barbaglia, Luca [1 ]
Manzan, Sebastiano [2 ]
Tosetti, Elisa [3 ]
机构
[1] European Commiss, Joint Res Ctr, Via E Fermi 2749, I-21027 Ispra, VA, Italy
[2] Baruch Coll, Zicklin Sch Business, New York, NY USA
[3] Ca Foscari Univ Venice, Venice, Italy
关键词
big data; credit risk; loan default; machine learning; regional analysis; MORTGAGE DEFAULT; NEGATIVE EQUITY; MODELS; DELINQUENCY; RISK; REGULARIZATION; TERMINATION; REGRESSION; CRISIS; TESTS;
D O I
10.1093/jjfinec/nbab010
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We use a dataset of 12 million residential mortgages to investigate the loan default behavior in several European countries. We model the default occurrence as a function of borrower characteristics, loan-specific variables, and local economic conditions. We compare the performance of a set of machine learning algorithms relative to the logistic regression, finding that they perform significantly better in providing predictions. The most important variables in explaining loan default are the interest rate and the local economic characteristics. The existence of relevant geographical heterogeneity in the variable importance points at the need for regionally tailored risk-assessment policies in Europe.
引用
收藏
页码:569 / 596
页数:28
相关论文
共 70 条
[51]   Consumer credit-risk models via machine-learning algorithms [J].
Khandani, Amir E. ;
Kim, Adlar J. ;
Lo, Andrew W. .
JOURNAL OF BANKING & FINANCE, 2010, 34 (11) :2767-2787
[52]  
King Gary., 2001, Political Analysis, V9, P137, DOI [DOI 10.1093/OXFORDJOURNALS.PAN.A004868, 10.1093/oxfordjournals.pan.a004868]
[53]  
Lahiri K, 2013, HBK ECON, P1025, DOI 10.1016/B978-0-444-62731-5.00019-1
[54]   Mortgage default and possession under recourse: A competing hazards approach [J].
Lambrecht, BM ;
Perraudin, WRM ;
Satchell, S .
JOURNAL OF MONEY CREDIT AND BANKING, 2003, 35 (03) :425-442
[55]  
Lundberg SM, 2017, ADV NEUR IN, V30
[56]   Forecasting Inflation in a Data-Rich Environment: The Benefits of Machine Learning Methods [J].
Medeiros, Marcelo C. ;
Vasconcelos, Gabriel F. R. ;
Veiga, Alvaro ;
Zilberman, Eduardo .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (01) :98-119
[57]   HOUSEHOLD DEBT AND BUSINESS CYCLES WORLDWIDE [J].
Mian, Atif ;
Sufi, Amir ;
Verner, Emil .
QUARTERLY JOURNAL OF ECONOMICS, 2017, 132 (04) :1755-1817
[58]   THE CONSEQUENCES OF MORTGAGE CREDIT EXPANSION: EVIDENCE FROM THE US MORTGAGE DEFAULT CRISIS [J].
Mian, Atif ;
Sufi, Amir .
QUARTERLY JOURNAL OF ECONOMICS, 2009, 124 (04) :1449-1496
[59]   Machine Learning: An Applied Econometric Approach [J].
Mullainathan, Sendhil ;
Spiess, Jann .
JOURNAL OF ECONOMIC PERSPECTIVES, 2017, 31 (02) :87-106
[60]   Definitions, methods, and applications in interpretable machine learning [J].
Murdoch, W. James ;
Singh, Chandan ;
Kumbier, Karl ;
Abbasi-Asl, Reza ;
Yu, Bin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) :22071-22080