Generating Imprecise Data from Log-Normal Distribution

被引:1
作者
Aslam, Muhammad [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah 21551, Saudi Arabia
关键词
Algorithm; simulation; log-normal distribution; classical statistics; efficiency;
D O I
10.1080/15366367.2024.2329504
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
The existing algorithm employing the log-normal distribution lacks applicability in generating imprecise data. This paper addresses this limitation by first introducing the log-normal distribution as a means to handle imprecise data. Subsequently, we leverage the neutrosophic log-normal distribution to devise an algorithm specifically tailored for simulating imprecise data. During the generation of log-normal data, we systematically vary the degree of indeterminacy to observe its impact. Multiple tables will be presented to illustrate the influence of different degrees of indeterminacy across various mean and variance values. The application of a single sampling plan will be demonstrated using data generated by our proposed algorithm, contrasting it with results from the existing algorithm. Through simulation and practical application, our findings highlight the significant role played by the degree of indeterminacy in the data generation process from the log-normal distribution.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2014, Introduction to Neutrosophic Statistics: Infinite Study
  • [2] Algorithm for generating neutrosophic data using accept-reject method
    Aslam, Muhammad
    Alamri, Faten S.
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [3] Simulating imprecise data: sine-cosine and convolution methods with neutrosophic normal distribution
    Aslam, Muhammad
    [J]. JOURNAL OF BIG DATA, 2023, 10 (01)
  • [4] Truncated variable algorithm using DUS-neutrosophic Weibull distribution
    Aslam, Muhammad
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 3107 - 3114
  • [5] Bautista-Hernandez J., 2023, IFIP Advances in Information and Communication Technology, V678, DOI [10.1007/978-3-031-36007-7_, DOI 10.1007/978-3-031-36007-7]
  • [6] Scale Effect and Anisotropy Analyzed for Neutrosophic Numbers of Rock Joint Roughness Coefficient Based on Neutrosophic Statistics
    Chen, Jiqian
    Ye, Jun
    Du, Shigui
    [J]. SYMMETRY-BASEL, 2017, 9 (10):
  • [7] Expressions of Rock Joint Roughness Coefficient Using Neutrosophic Interval Statistical Numbers
    Chen, Jiqian
    Ye, Jun
    Du, Shigui
    Yong, Rui
    [J]. SYMMETRY-BASEL, 2017, 9 (07):
  • [8] Garg H., 2020, Algorithms for single-valued neutrosophic decision making based on TOPSIS and clustering methods with new distance measure
  • [9] On the Usefulness of the Logarithmic Skew Normal Distribution for Describing Claims Size Data
    Gomez-Deniz, E.
    Calderin-Ojeda, E.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [10] Granados C., 2023, Advances in the Theory of Nonlinear Analysis and its Application, V6, P380, DOI [10.31197/atnaa.1056480, DOI 10.31197/ATNAA.1056480]