Rapid design of top-performing metal-organic frameworks with qualitative representations of building blocks

被引:14
作者
Comlek, Yigitcan [1 ]
Pham, Thang Duc [2 ]
Snurr, Randall Q. [2 ]
Chen, Wei [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA
基金
美国国家科学基金会;
关键词
HYDROGEN STORAGE; FORCE-FIELD; SEPARATION; OPTIMIZATION; MOFS;
D O I
10.1038/s41524-023-01125-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Data-driven materials design often encounters challenges where systems possess qualitative (categorical) information. Specifically, representing Metal-organic frameworks (MOFs) through different building blocks poses a challenge for designers to incorporate qualitative information into design optimization, and leads to a combinatorial challenge, with large number of MOFs that could be explored. In this work, we integrated Latent Variable Gaussian Process (LVGP) and Multi-Objective Batch-Bayesian Optimization (MOBBO) to identify top-performing MOFs adaptively, autonomously, and efficiently. We showcased that our method (i) requires no specific physical descriptors and only uses building blocks that construct the MOFs for global optimization through qualitative representations, (ii) is application and property independent, and (iii) provides an interpretable model of building blocks with physical justification. By searching only similar to 1% of the design space, LVGP-MOBBO identified all MOFs on the Pareto front and 97% of the 50 top-performing designs for the CO2 working capacity and CO2/N-2 selectivity properties.
引用
收藏
页数:14
相关论文
共 61 条
[11]   Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization [J].
Couckuyt, Ivo ;
Deschrijver, Dirk ;
Dhaene, Tom .
JOURNAL OF GLOBAL OPTIMIZATION, 2014, 60 (03) :575-594
[12]   Extension of the Universal Force Field for Metal-Organic Frameworks [J].
Coupry, Damien E. ;
Addicoat, Matthew A. ;
Heine, Thomas .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2016, 12 (10) :5215-5225
[13]   Bayesian optimization of nanoporous materials [J].
Deshwal, Aryan ;
Simon, Cory M. ;
Doppa, Janardhan Rao .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2021, 6 (12) :1066-1086
[14]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101
[15]  
Frazier PI, 2016, SPRINGER SER MATER S, V225, P45, DOI 10.1007/978-3-319-23871-5_3
[16]   The Current Status of MOF and COF Applications [J].
Freund, Ralph ;
Zaremba, Orysia ;
Dinca, Mircea ;
Arnauts, Giel ;
Ameloot, Rob ;
Skorupskii, Grigorii ;
Bavykina, Anastasiya ;
Gascon, Jorge ;
Ejsmont, Aleksander ;
Goscianska, Joanna ;
Kalmutzki, Markus ;
Lachelt, Ulrich ;
Ploetz, Evelyn ;
Diercks, Christian S. ;
Wuttke, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (45) :23975-24001
[17]   Benchmark Study of Hydrogen Storage in Metal-Organic Frameworks under Temperature and Pressure Swing Conditions [J].
Garcia-Holley, Paula ;
Schweitzer, Benjamin ;
Islamoglu, Timur ;
Liu, Yangyang ;
Lin, Lu ;
Rodriguez, Stephanie ;
Weston, Mitchell H. ;
Hupp, Joseph T. ;
Gomez-Gualdron, Diego A. ;
Yildirim, Taner ;
Farha, Omar K. .
ACS ENERGY LETTERS, 2018, 3 (03) :748-754
[18]   Creating Optimal Pockets in a Clathrochelate-Based Metal-Organic Framework for Gas Adsorption and Separation: Experimental and Computational Studies [J].
Gong, Wei ;
Xie, Yi ;
Thang Duc Pham ;
Shetty, Suchetha ;
Son, Florencia A. ;
Idrees, Karam B. ;
Chen, Zhijie ;
Xie, Haomiao ;
Liu, Yan ;
Snurr, Randall Q. ;
Chen, Banglin ;
Alameddine, Bassam ;
Cui, Yong ;
Farha, Omar K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (08) :3737-3745
[19]   Construction of an Anion-Pillared MOF Database and the Screening of MOFs Suitable for Xe/Kr Separation [J].
Gu, Chenkai ;
Yu, Zhenzi ;
Liu, Jing ;
Sholl, David S. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (09) :11039-11049
[20]   Artificial intelligence and machine learning in design of mechanical materials [J].
Guo, Kai ;
Yang, Zhenze ;
Yu, Chi-Hua ;
Buehler, Markus J. .
MATERIALS HORIZONS, 2021, 8 (04) :1153-1172