Dirichlet Solutions of Functional Differential Equations without Delay

被引:0
作者
Evlampiev, N. P. [1 ]
Mokeichev, V. S. [2 ]
Filippov, I. E. [2 ]
机构
[1] OOO Blits M, Kazan 420054, Russia
[2] Kazan Fed Univ, Kazan 420008, Russia
来源
UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI | 2023年 / 165卷 / 02期
关键词
functional differential equation; Dirichlet solution; advance of the argument; linear deviation of the argument; pseudo-differential operator symbol;
D O I
10.26907/2541-7746.2023.2.132-142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions for the existence of a valid Dirichlet solution were obtained. A method was developed to find Dirichlet solutions of the functional differential equation with non-delayed linear argument deviation.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 9 条
  • [1] Ambartsumyan V.A., 1960, Research Works, V1
  • [2] [Anonymous], 1931, Bull. Am. Math. Soc
  • [3] Evlampiev NP, 2016, UCHENYE ZAP KAZAN UN, V158, P194
  • [4] Евлампиев Николай Петрович, 2014, [Ученые записки Казанского университета. Серия: Физико-математические науки, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Uchenye zapiski Kazanskogo universiteta. Seriya: Fiziko-matematicheskie nauki], V156, P25
  • [5] On a functional differential equation
    Evlampiev N.P.
    Sidorov A.M.
    Filippov I.E.
    [J]. Lobachevskii Journal of Mathematics, 2017, 38 (3) : 588 - 593
  • [6] Flamant P., 1924, C. R. Acad. Sci., Paris,, V137, P1595
  • [7] Mokeichev V.S., 1991, Sov. Math. (Izv. Vyssh. Uchebn. Zaved.), V35, P42
  • [8] Mokeichev V.S., 1985, Differential Equations with Deviating Arguments
  • [9] Rusakov G.I, 1949, Uch. Zap. Leningr. Univ. Ser. Mat. Nauk, P53