A Binocular Vision-Based Crack Detection and Measurement Method Incorporating Semantic Segmentation

被引:2
|
作者
Zhang, Zhicheng [1 ]
Shen, Zhijing [1 ]
Liu, Jintong [1 ]
Shu, Jiangpeng [1 ]
Zhang, He [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ctr Balance Architecture, Hangzhou 310058, Peoples R China
基金
国家重点研发计划;
关键词
non-contact measurement; crack width; deep learning; image processing; binocular vision; CONCRETE CRACK; EDGE-DETECTION; DAMAGE DETECTION; NEURAL-NETWORKS; FEATURES; SYSTEM; NET;
D O I
10.3390/s24010003
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The morphological characteristics of a crack serve as crucial indicators for rating the condition of the concrete bridge components. Previous studies have predominantly employed deep learning techniques for pixel-level crack detection, while occasionally incorporating monocular devices to quantify the crack dimensions. However, the practical implementation of such methods with the assistance of robots or unmanned aerial vehicles (UAVs) is severely hindered due to their restrictions in frontal image acquisition at known distances. To explore a non-contact inspection approach with enhanced flexibility, efficiency and accuracy, a binocular stereo vision-based method incorporating full convolutional network (FCN) is proposed for detecting and measuring cracks. Firstly, our FCN leverages the benefits of the encoder-decoder architecture to enable precise crack segmentation while simultaneously emphasizing edge details at a rate of approximately four pictures per second in a database that is dominated by complex background cracks. The training results demonstrate a precision of 83.85%, a recall of 85.74% and an F1 score of 84.14%. Secondly, the utilization of binocular stereo vision improves the shooting flexibility and streamlines the image acquisition process. Furthermore, the introduction of a central projection scheme achieves reliable three-dimensional (3D) reconstruction of the crack morphology, effectively avoiding mismatches between the two views and providing more comprehensive dimensional depiction for cracks. An experimental test is also conducted on cracked concrete specimens, where the relative measurement error in crack width ranges from -3.9% to 36.0%, indicating the practical feasibility of our proposed method.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation
    Deepak Kumar Dewangan
    Satya Prakash Sahu
    Bandi Sairam
    Aditi Agrawal
    Computing, 2021, 103 : 2867 - 2892
  • [22] VLDNet: Vision-based lane region detection network for intelligent vehicle system using semantic segmentation
    Dewangan, Deepak Kumar
    Sahu, Satya Prakash
    Sairam, Bandi
    Agrawal, Aditi
    COMPUTING, 2021, 103 (12) : 2867 - 2892
  • [23] Automated bridge surface crack detection and segmentation using computer vision-based deep learning model
    Zhang, Jian
    Qian, Songrong
    Tan, Can
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 115
  • [24] Measurement Method of Underwater Target Based on Binocular Vision
    Ye, Xiufen
    Chen, Hao
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 48 - 59
  • [25] Review on computer vision-based crack detection and quantification methodologies for civil structures
    Deng, Jianghua
    Singh, Amardeep
    Zhou, Yiyi
    Lu, Ye
    Lee, Vincent Cheng-Siong
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 356
  • [26] Optical Rail Surface Crack Detection Method Based on Semantic Segmentation Replacement for Magnetic Particle Inspection
    Kou, Lei
    Sysyn, Mykola
    Fischer, Szabolcs
    Liu, Jianxing
    Nabochenko, Olga
    SENSORS, 2022, 22 (21)
  • [27] Review of Research on Vision-Based Parking Space Detection Method
    Ma, Yong
    Liu, Yangguo
    Shao, Shiyun
    Zhao, Jiale
    Tang, Jun
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2022, 19 (01)
  • [28] Estimation of crack width based on shape-sensitive kernels and semantic segmentation
    Lee, Jun S.
    Hwang, Sung Ho
    Choi, Il Yoon
    Choi, Yeongtae
    STRUCTURAL CONTROL & HEALTH MONITORING, 2020, 27 (04):
  • [29] Binocular Vision-based Underwater Ranging Methods
    Guo, Shuxiang
    Chen, Shangze
    Liu, Fagen
    Ye, Xiufen
    Yang, Hongbiao
    2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, : 1058 - 1063
  • [30] Vision-Based Method Integrating Deep Learning Detection for Tracking Multiple Construction Machines
    Xiao, Bo
    Kang, Shih-Chung
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2021, 35 (02)