On weak solutions to a fractional Hardy-Henon equation, Part II: Existence

被引:0
|
作者
Hasegawa, Shoichi [1 ]
Ikoma, Norihisa [2 ]
Kawakami, Tatsuki [3 ]
机构
[1] Waseda Univ, Sch Fundamental Sci & Engn, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Keio Univ, Fac Sci & Technol, Dept Math, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
[3] Ryukoku Univ, Fac Adv Sci & Technol, Appl Math & Informat Course, 1-5 Yokotani,Seta Oe Cho, Otsu, Shiga 5202194, Japan
关键词
Fractional Hardy-Henon equation; Stable solutions; Separation property; SEMILINEAR ELLIPTIC EQUATION; LIOUVILLE THEOREMS; POSITIVE SOLUTIONS; CRITICAL EXPONENT; RADIAL SOLUTIONS; STABLE-SOLUTIONS; PROPERTY; CLASSIFICATION; INEQUALITIES; STABILITY;
D O I
10.1016/j.na.2022.113165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper and Hasegawa et al. (2021) treat the existence and nonexistence of stable weak solutions to a fractional Hardy-Henon equation (-Delta)(s)u = |x|(l)|u|(p-1) u in R-N, where 0 < s < 1, l > -2s, p > 1, N >= 1 and N > 2s. In this paper, when p is critical or supercritical in the sense of the Joseph-Lundgren, we prove the existence of a family of positive radial stable solutions, which satisfies the separation property. We also show the multiple existence of the Joseph-Lundgren critical exponent for some l is an element of(0, infinity) and s is an element of (0, 1), and this property does not hold in the case s = 1. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:48
相关论文
共 50 条
  • [1] ON WEAK SOLUTIONS TO A FRACTIONAL HARDY-HENON EQUATION: PART I: NONEXISTENCE
    Hasegawa, Shoichi
    Ikoma, Norihisa
    Kawakami, Tatsuki
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1559 - 1600
  • [2] Estimate, existence and nonexistence of positive solutions of Hardy-Henon equations
    Cheng, Xiyou
    Wei, Lei
    Zhang, Yimin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (02) : 518 - 541
  • [3] Hardy-Henon fractional equation with nonlinearities involving exponential critical growth
    Barboza, Eudes M.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    Santana, Claudia R.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 307 - 345
  • [4] Fractional Hardy-Henon equations on exterior domains
    Li, Yimei
    Bao, Jiguang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1153 - 1175
  • [5] Nonexistence of anti-symmetric solutions for fractional Hardy-Henon system
    Hu, Jiaqi
    Du, Zhuoran
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024, 154 (03) : 862 - 886
  • [6] Local behavior of solutions to fractional Hardy-Henon equations with isolated singularity
    Li, Yimei
    Bao, Jiguang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (01) : 41 - 59
  • [7] Nontrivial solutions of Hardy-Henon type elliptic systems
    Liu, Fang
    Yang, Jianfu
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (04) : 673 - 688
  • [8] NONTRIVIAL SOLUTIONS OF HARDY-HENON TYPE ELLIPTIC SYSTEMS
    刘芳
    杨健夫
    Acta Mathematica Scientia, 2007, (04) : 673 - 688
  • [9] Exhaustive existence and non-existence results for Hardy-Henon equations in Rn
    Giga, Yoshikazu
    Ngo, Quoc Anh
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (06):
  • [10] Liouville-type theorems for fractional Hardy-Henon systems
    Li, Kui
    Yu, Meng
    Zhang, Zhitao
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):