Classification of minimal blocking sets in PG(2,9)

被引:3
作者
Botteldoorn, Arne [1 ]
Coolsaet, Kris [1 ]
Fack, Veerle [1 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281-S9, B-9000 Ghent, Belgium
关键词
Blocking set; Computer classification; Desarguesian projective plane; Semioval; SEMIOVALS;
D O I
10.1007/s00022-023-00702-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A full classification (up to equivalence) of all minimal blocking sets in PG(2, 9) was obtained by computer. The resulting numbers of minimal blocking sets are tabulated according to size of the set and order of the automorphism group. For the minimal blocking sets with the larger automorphism groups explicit (geometric) descriptions are given. Some of these results can also be generalised to Desarguesian projective planes of higher order. We also give a complete list of all blocking semiovals in PG(2, 9) (up to equivalence).
引用
收藏
页数:27
相关论文
共 30 条
[1]   Feet in orthogonal-Buekenhout-Metz unitals [J].
Abarzua, N. ;
Pomareda, R. ;
Vega, O. .
ADVANCES IN GEOMETRY, 2018, 18 (02) :229-236
[2]  
[Anonymous], 1959, I HAUTES ETUDES SCI, V2, P13
[3]   On the Structure of Semiovals of Small Size [J].
Bartoli, Daniele .
JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (12) :525-536
[4]   SUBGROUPS OF PSL(3,Q] FOR ODD Q [J].
BLOOM, DM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 127 (01) :150-&
[5]  
Bruen A., 2010, Quad. Mat, DOI [10.4399/97888548357195, DOI 10.4399/97888548357195]
[6]   ARCS AND BLOCKING SETS .2. [J].
BRUEN, AA ;
SILVERMAN, R .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) :351-356
[7]  
Buekenhout F., 1976, GEOM DEDICATA, V5, P189, DOI [10.1007/BF00145956, DOI 10.1007/BF00145956]
[8]   Classification of minimal blocking sets in small Desarguesian projective planes [J].
Coolsaet, Kris ;
Botteldoorn, Arne ;
Fack, Veerle .
JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (08) :561-580
[9]   A minimum blocking semioval in PG(2, 9) [J].
Dover, Jeremy M. ;
Mellinger, Keith E. ;
Wantz, Kenneth L. .
JOURNAL OF GEOMETRY, 2016, 107 (01) :119-123
[10]   Blocking semiovals containing conics [J].
Dover, Jeremy M. ;
Mellinger, Keith E. ;
Wantz, Kenneth L. .
ADVANCES IN GEOMETRY, 2013, 13 (01) :29-40