Moderate Deviations for Parameter Estimation in the Fractional Ornstein-Uhlenbeck Processes with Periodic Mean

被引:36
作者
Jiang, Hui [1 ]
Li, Shi Min [2 ]
Wang, Wei Gang [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing 210016, Peoples R China
[2] Peoples Bank China, Operat Off, Nanjing Branch, Nanjing 210016, Peoples R China
[3] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
关键词
Cramer-type moderate deviation; fractional Ornstein-Uhlenbeck process; parameter estimation; multiple Wiener-Ito integrals; LEAST-SQUARES ESTIMATOR; CENTRAL LIMIT-THEOREMS; SHARP LARGE DEVIATIONS; PROCESS DRIVEN; INEQUALITIES; INTEGRALS;
D O I
10.1007/s10114-023-2157-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the asymptotic properties for the drift parameter estimators in the fractional Ornstein-Uhlenbeck process with periodic mean function and long range dependence. The Cremer-type moderate deviations, as well as the moderation deviation principle with explicit rate function can be obtained.
引用
收藏
页码:1308 / 1324
页数:17
相关论文
共 38 条
[1]  
[Anonymous], 2003, Electron. J. Probab.
[2]   Least squares estimator of fractional Ornstein-Uhlenbeck processes with periodic mean [J].
Bajja, Salwa ;
Es-Sebaiy, Khalifa ;
Viitasaari, Lauri .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) :608-622
[3]   SHARP LARGE DEVIATIONS FOR THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS [J].
Bercu, B. ;
Coutin, L. ;
Savy, N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2011, 55 (04) :575-610
[4]  
Bercu B, 2001, THEOR PROBAB APPL+, V46, P1
[5]   Large deviations for the Ornstein-Uhlenbeck process without tears [J].
Bercu, Bernard ;
Richou, Adrien .
STATISTICS & PROBABILITY LETTERS, 2017, 123 :45-55
[6]   LARGE DEVIATIONS FOR THE ORNSTEIN-UHLENBECK PROCESS WITH SHIFT [J].
Bercu, Bernard ;
Richou, Adrien .
ADVANCES IN APPLIED PROBABILITY, 2015, 47 (03) :880-901
[7]   CRAMER-TYPE MODERATE DEVIATIONS FOR STUDENTIZED TWO-SAMPLE U-STATISTICS WITH APPLICATIONS [J].
Chang, Jinyuan ;
Shao, Qi-Man ;
Zhou, Wen-Xin .
ANNALS OF STATISTICS, 2016, 44 (05) :1931-1956
[8]   PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE [J].
Chen, Yong ;
Zhou, Hongjuan .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) :573-595
[9]   Berry-Esseen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes [J].
Chen, Yong ;
Kuang, Nenghui ;
Li, Ying .
STOCHASTICS AND DYNAMICS, 2020, 20 (04)
[10]   Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean [J].
Dehling H. ;
Franke B. ;
Woerner J.H.C. .
Statistical Inference for Stochastic Processes, 2017, 20 (1) :1-14