A NEW HYBRID CG METHOD AS CONVEX COMBINATION

被引:2
作者
Hallal, Amina [1 ]
Belloufi, Mohammed [1 ]
Sellami, Badreddine [1 ]
机构
[1] Mohamed Cher Messaadia Univ, Dept Informat & Math, Souk Ahras 41000, Algeria
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2024年 / 7卷 / 04期
关键词
Unconstrained optimization; hybrid conjugate gradient method; glob-ale convergence; numerical results; CONJUGATE-GRADIENT METHOD; PRP; FR; LS;
D O I
10.3934/mfc.2023028
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Conjugate gradient methods are among the most efficient methods for solving optimization models. In this paper, a newly proposed conjugate gradient method is proposed for solving optimization problems as a convex combination of the Harger-Zhan and Dai-Yaun nonlinear conjugate gradient methods, which is capable of producing the sufficient descent condition with global convergence properties under the strong Wolfe conditions. The numerical results demonstrate the efficiency of the proposed method with some benchmark problems.
引用
收藏
页码:522 / 530
页数:9
相关论文
共 19 条