Cerebral oxygen metabolism from MRI susceptibility

被引:24
作者
Biondetti, Emma [1 ,2 ]
Cho, Junghun [3 ]
Lee, Hyunyeol [4 ,5 ,6 ]
机构
[1] Dannunzio Univ Chieti Pescara, Dept Neurosci Imaging & Clin Sci, Chieti, Italy
[2] Dannunzio Univ Chieti Pescara, Inst Adv Biomed Technol, Chieti, Italy
[3] SUNY Buffalo, Dept Biomed Engn, New York, NY USA
[4] Kyungpook Natl Univ, Sch Elect & Elect Engn, Daegu, South Korea
[5] Univ Penn, Dept Radiol, Philadelphia, PA USA
[6] Kyungpook Natl Univ, Sch Elect & Elect Engn, 80 Daehak Ro, Daegu 41075, South Korea
基金
美国国家卫生研究院;
关键词
Magnetic susceptibility; Oxygen extraction fraction; Cerebral metabolic rate of oxygen; Veins; Blood oxygenation level dependent fMRI; oximetry; MAGNETIC-FIELD INHOMOGENEITY; EXTRACTION FRACTION MEASUREMENT; DEOXYGENATED BLOOD-VOLUME; IMAGE-BASED MEASUREMENT; VENOUS OXYGENATION; ALZHEIMERS-DISEASE; QUANTITATIVE BOLD; IN-VIVO; CYLINDER APPROXIMATION; BRAIN OXYGENATION;
D O I
10.1016/j.neuroimage.2023.120189
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This article provides an overview of MRI methods exploiting magnetic susceptibility properties of blood to assess cerebral oxygen metabolism, including the tissue oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). The first section is devoted to describing blood magnetic susceptibility and its effect on the MRI signal. Blood circulating in the vasculature can have diamagnetic (oxyhemoglobin) or paramagnetic properties (deoxyhemoglobin). The overall balance between oxygenated and deoxygenated hemoglobin deter-mines the induced magnetic field which, in turn, modulates the transverse relaxation decay of the MRI signal via additional phase accumulation. The following sections of this review then illustrate the principles underpinning susceptibility-based techniques for quantifying OEF and CMRO2. Here, it is detailed whether these techniques provide global (OxFlow) or local (Quantitative Susceptibility Mapping -QSM, calibrated BOLD -cBOLD, quanti-tative BOLD -qBOLD, QSM +qBOLD) measurements of OEF or CMRO2, and what signal components (magnitude or phase) and tissue pools they consider (intravascular or extravascular). Validations studies and potential limita-tions of each method are also described. The latter include (but are not limited to) challenges in the experimental setup, the accuracy of signal modeling, and assumptions on the measured signal. The last section outlines the clinical uses of these techniques in healthy aging and neurodegenerative diseases and contextualizes these reports relative to results from gold-standard PET.
引用
收藏
页数:14
相关论文
共 170 条
[1]  
Abaci Turk Esra, 2019, Top Magn Reson Imaging, V28, P285, DOI [10.1097/rmr.0000000000000221, 10.1097/RMR.0000000000000221]
[2]   Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia [J].
Alsop, David C. ;
Detre, John A. ;
Golay, Xavier ;
Guenther, Matthias ;
Hendrikse, Jeroen ;
Hernandez-Garcia, Luis ;
Lu, Hanzhang ;
MacIntosh, Bradley J. ;
Parkes, Laura M. ;
Smits, Marion ;
van Osch, Matthias J. P. ;
Wang, Danny J. J. ;
Wong, Eric C. ;
Zaharchuk, Greg .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :102-116
[3]   Impact of intravascular signal on quantitative measures of cerebral oxygen extraction and blood volume under normo- and hypercapnic conditions using an asymmetric spin echo approach [J].
An, H ;
Lin, WL .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (04) :708-716
[4]   Evaluation of MR-Derived Cerebral Oxygen Metabolic Index in Experimental Hyperoxic Hypercapnia, Hypoxia, and Ischemia [J].
An, Hongyu ;
Liu, Qingwei ;
Chen, Yasheng ;
Lin, Weili .
STROKE, 2009, 40 (06) :2165-2172
[5]   Cerebral oxygen extraction fraction and cerebral venous blood volume measurements using MRI: Effects of magnetic field variation [J].
An, HY ;
Lin, WL .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (05) :958-966
[6]   Cerebral venous and arterial blood volumes can be estimated separately in humans using magnetic resonance imaging [J].
An, HY ;
Lin, WL .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (04) :583-588
[7]   Quantitative measurements of cerebral blood oxygen saturation using magnetic resonance imaging [J].
An, HY ;
Lin, WL .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (08) :1225-1236
[8]   Effects of Aging on Cerebral Blood Flow, Oxygen Metabolism, and Blood Oxygenation Level Dependent Responses to Visual Stimulation [J].
Ances, Beau M. ;
Liang, Christine L. ;
Leontiev, Oleg ;
Perthen, Joanna E. ;
Fleisher, Adam S. ;
Lansing, Amy E. ;
Buxton, Richard B. .
HUMAN BRAIN MAPPING, 2009, 30 (04) :1120-1132
[9]   Method for rapid MRI quantification of global cerebral metabolic rate of oxygen [J].
Barhoum, Suliman ;
Langham, Michael C. ;
Magland, Jeremy F. ;
Rodgers, Zachary B. ;
Li, Cheng ;
Rajapakse, Chamith S. ;
Wehrli, Felix W. .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2015, 35 (10) :1616-1622
[10]   Comparison of MRI methods for measuring whole-brain venous oxygen saturation [J].
Barhoum, Suliman ;
Rodgers, Zachary B. ;
Langham, Michael ;
Magland, Jeremy F. ;
Li, Cheng ;
Wehrli, Felix W. .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (06) :2122-2128