iDPP@CLEF 2023: The Intelligent Disease Progression Prediction Challenge

被引:2
作者
Aidos, Helena [1 ]
Bergamaschi, Roberto [2 ]
Cavalla, Paola [3 ]
Chio, Adriano [4 ]
Dagliati, Arianna [2 ]
Di Camillo, Barbara [5 ]
de Carvalho, Mamede Alves [1 ]
Ferro, Nicola [5 ]
Fariselli, Piero [4 ]
Garcia Dominguez, Jose Manuel [6 ]
Madeira, Sara C. [1 ]
Tavazzi, Eleonora [7 ]
机构
[1] Univ Lisbon, Lisbon, Portugal
[2] Univ Pavia, Pavia, Italy
[3] Citta Salute & Sci, Turin, Italy
[4] Univ Turin, Turin, Italy
[5] Univ Padua, Padua, Italy
[6] Gregorio Maranon Hosp Madrid, Madrid, Spain
[7] IRCCS Fdn C Mondino Pavia, Pavia, Italy
来源
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT III | 2023年 / 13982卷
关键词
SCLEROSIS; SCALE;
D O I
10.1007/978-3-031-28241-6_57
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS) are chronic diseases characterized by progressive or alternate impairment of neurological functions (motor, sensory, visual, cognitive). Patients have to manage alternated periods in hospital with care at home, experiencing a constant uncertainty regarding the timing of the disease acute phases and facing a considerable psychological and economic burden that also involves their caregivers. Clinicians, on the other hand, need tools able to support them in all the phases of the patient treatment, suggest personalized therapeutic decisions, indicate urgently needed interventions.
引用
收藏
页码:491 / 498
页数:8
相关论文
共 13 条
[1]  
Bettin M., 2021, GA101017598 BRAINTEA
[2]  
Branco R., Hierarchical modelling for als prognosis: predicting the progression towards critical events, P1211
[3]  
Buonocore T.M., EVALUATION XAI ALS 6, P1236
[4]   The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function [J].
Cedarbaum, JM ;
Stambler, N ;
Malta, E ;
Fuller, C ;
Hilt, D ;
Thurmond, B ;
Nakanishi, A .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1999, 169 (1-2) :13-21
[5]  
Faggioli G., 2022, CEUR WORKSHOP P
[6]  
Guazzo A., OVERVIEW IDPP CLEF 2, P1130
[7]   Intelligent Disease Progression Prediction: Overview of iDPP@CLEF 2022 [J].
Guazzo, Alessandro ;
Trescato, Isotta ;
Longato, Enrico ;
Hazizaj, Enidia ;
Dosso, Dennis ;
Fagoli, Guglielmo ;
Di Nunzio, Giorgio Maria ;
Silvello, Gianmaria ;
Vettoretti, Martina ;
Tavazzi, Erica ;
Roversi, Chiara ;
Fariselli, Piero ;
Madeira, Sara C. ;
de Carvalho, Mamede ;
Gromicho, Marta ;
Chio, Adriano ;
Manera, Umberto ;
Dagliati, Arianna ;
Birolo, Giovanni ;
Aidos, Helena ;
Di Camillo, Barbara ;
Ferro, Nicola .
EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION (CLEF 2022), 2022, 13390 :395-422
[8]   Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression [J].
Kueffner, Robert ;
Zach, Neta ;
Norel, Raquel ;
Hawe, Johann ;
Schoenfeld, David ;
Wang, Liuxia ;
Li, Guang ;
Fang, Lilly ;
Mackey, Lester ;
Hardiman, Orla ;
Cudkowicz, Merit ;
Sherman, Alexander ;
Ertaylan, Gokhan ;
Grosse-Wentrup, Moritz ;
Hothorn, Torsten ;
van Ligtenberg, Jules ;
Macke, Jakob H. ;
Meyer, Timm ;
Schoelkopf, Bernhard ;
Tran, Linh ;
Vaughan, Rubio ;
Stolovitzky, Gustavo ;
Leitner, Melanie L. .
NATURE BIOTECHNOLOGY, 2015, 33 (01) :51-U292
[9]  
KURTZKE JF, 1983, NEUROLOGY, V33, P1444, DOI 10.1212/WNL.33.11.1444
[10]  
Mannion A., PREDICTING RISK TIME