The Residual Impact of Goethite-Modified Biochar on Cadmium and Arsenic Uptake by Maize in Co-Contaminated Soil

被引:1
|
作者
Abdelrhman, Fatma [1 ,2 ]
Wang, Xuewei [1 ]
Fu, Qingling [1 ]
Hu, Hongqing [1 ,4 ]
Fang, Linchuan [3 ]
机构
[1] Huazhong Agr Univ, Coll Resources & Environm, Key Lab Soil Hlth Diagnost & Green Remediat, Minist Ecol & Environm, Wuhan, Peoples R China
[2] Cairo Univ, Fac Agr, Agr Engn Dept, Giza, Egypt
[3] CAS & MWR, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess Pl, Yangling, Peoples R China
[4] Huazhong Agr Univ, Coll Resources & Environm, Key Lab Soil Hlth Diagnost & Green Remediat, Minist Ecol & Environm, Wuhan 430070, Peoples R China
来源
SOIL & SEDIMENT CONTAMINATION | 2024年 / 33卷 / 03期
基金
中国国家自然科学基金;
关键词
Residual impact; goethite-modified biochar; maize plant; immobilization; uptake; MEDIATED ALLEVIATION; CD-TOXICITY; IRON; REMOVAL; MECHANISMS; PLANTS; WATER; RICE; BIOACCESSIBILITY; COMBINATION;
D O I
10.1080/15320383.2023.2208673
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cadmium (Cd) and arsenic (As) are toxic elements that threaten plants and human health. Due to the opposite transformations of Cd and As, their simultaneous immobilization poses numerous concerns. Thus, there is an urgent need to simultaneously reduce Cd and As mobility and plant uptake in co-contaminated soil. Our previous work found that goethite-modified biochar amendments effectively reduced Cd and As uptake by Chinese cabbage; however, their residual impact on subsequent crops must be investigated. In the current work, the following maize (Zea mays L.) was grown after Chinese cabbage in Cd and As co-contaminated soil amended by biochar (BC), goethite (G), and goethite-modified biochar (GBC) at a 1% application rate. The synthesis of GBCs involved two different initial mass ratios of iron/biochar (Fe/BC), with GBC1 having a Fe/BC ratio of 1:1 and GBC2 having a Fe/BC ratio of 2:1. The current study assessed the residual impacts of BC, G, and GBC amendments on Cd and As mobility, uptake by maize, and their impacts on maize growth. The results revealed that GBC amendments enhanced maize growth, chlorophyll content, and gas exchange parameters compared to raw BC and G. Moreover, the GBC1 amendment lowered Cd and As uptake by maize shoots (29.48% and 61.56%) and roots (33.07% and 37.32%), respectively, compared to unamended soil (CK). The GBC1 amendment decreased the bioaccessibility of Cd and As by 24.37% and 37.44%, respectively, compared with CK. In general, the results demonstrated that GBC has a significant residual impact on maize growth and Cd and As uptake in co-contaminated soil.
引用
收藏
页码:375 / 392
页数:18
相关论文
共 50 条
  • [31] Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead
    Nahid Azadi
    Fayez Raiesi
    Biochar, 2021, 3 : 485 - 498
  • [32] Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil
    Rizwan, Muhammad
    Ali, Shafaqat
    Abbas, Tahir
    Rehman, Muhammad Zia Ur
    Al-Wabel, Mohammad I.
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (20)
  • [33] Residual impact of biochar on cadmium uptake by rice (Oryza sativa L.) grown in Cd-contaminated soil
    Muhammad Rizwan
    Shafaqat Ali
    Tahir Abbas
    Muhammad Zia ur Rehman
    Mohammad I. Al-Wabel
    Arabian Journal of Geosciences, 2018, 11
  • [34] Interaction of Cadmium and Polycyclic Aromatic Hydrocarbons in Co-contaminated Soil
    Fu Chen
    Zhanbin Luo
    Jing Ma
    Siyan Zeng
    Yongjun Yang
    Shaoliang Zhang
    Water, Air, & Soil Pollution, 2018, 229
  • [35] Interaction of Cadmium and Polycyclic Aromatic Hydrocarbons in Co-contaminated Soil
    Chen, Fu
    Luo, Zhanbin
    Ma, Jing
    Zeng, Siyan
    Yang, Yongjun
    Zhang, Shaoliang
    WATER AIR AND SOIL POLLUTION, 2018, 229 (04):
  • [36] Phosphate-modified ferric-based material remediates lead and arsenic co-contaminated soil and enhances maize seedling growth
    Yining Yuan
    Ming Lu
    Naimei Tu
    Yaoyao Li
    Environmental Science and Pollution Research, 2020, 27 : 7234 - 7243
  • [37] Phosphate-modified ferric-based material remediates lead and arsenic co-contaminated soil and enhances maize seedling growth
    Yuan, Yining
    Lu, Ming
    Tu, Naimei
    Li, Yaoyao
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (07) : 7234 - 7243
  • [38] EVALUATION OF DISSIPATION MECHANISMS FOR PYRENE BY MAIZE (ZEA MAYS L.) IN CADMIUM CO-CONTAMINATED SOIL
    Zhang, H.
    Dang, Z.
    Yi, X. Y.
    Yang, C.
    Zheng, L. C.
    Lu, G. N.
    GLOBAL NEST JOURNAL, 2009, 11 (04): : 487 - 496
  • [39] Geo-environmental and mechanical behaviors of As(V) and Cd(II) co-contaminated soils stabilized by goethite nanoparticles modified biochar
    Chen Feng
    Jiangshan Li
    Wenhao Jiang
    Jindu Liu
    Qiang Xue
    Biochar, 5
  • [40] Geo-environmental and mechanical behaviors of As(V) and Cd(II) co-contaminated soils stabilized by goethite nanoparticles modified biochar
    Feng, Chen
    Li, Jiangshan
    Jiang, Wenhao
    Liu, Jindu
    Xue, Qiang
    BIOCHAR, 2023, 5 (01)