Rydberg-State Engineering: Investigations of Tuning Schemes for Continuous Frequency Sensing

被引:24
作者
Berweger, Samuel [1 ]
Prajapati, Nikunjkumar [1 ]
Artusio-Glimpse, Alexandra B. [1 ]
Rotunno, Andrew P. [1 ]
Brown, Roger [1 ]
Holloway, Christopher L. [1 ]
Simons, Matthew T. [1 ]
Imhof, Eric [2 ]
Jefferts, Steven R. [2 ]
Kayim, Baran N. [3 ]
Viray, Michael A. [3 ]
Wyllie, Robert [3 ]
Sawyer, Brian C. [3 ]
Walker, Thad G. [4 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Northrop Grumman, Woodland Hills, CA 91361 USA
[3] Georgia Tech Res Inst, Atlanta, GA 30332 USA
[4] Univ Madison Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
ATOMS;
D O I
10.1103/PhysRevApplied.19.044049
中图分类号
O59 [应用物理学];
学科分类号
摘要
On-resonance Rydberg atom-based radio-frequency-(rf) electric-field sensing methods remain limited by the narrow frequency-signal detection bands available from resonant transitions. An additional rf tuner field can be used to dress or shift a target Rydberg state to return a detuned signal field to resonance and thus dramatically extend the frequency range available for resonant sensing. Here we investigate three distinct tuning-level schemes based on adjacent Rydberg transitions, which are shown to have distinct characteristics and can be controlled with the frequency or the strength of the tuning field. We further show that a two-photon Raman peak can be used as an effective tuning feature separate from conventional Autler-Townes splitting. We compare our tuning schemes with ac Stark effect-based broadband rf-field sensing and show that although the sensitivity is diminished with tuning away from a resonant state, it nevertheless can be used in configurations where there is a low density of Rydberg states, which would result in a weak ac Stark effect.
引用
收藏
页数:13
相关论文
共 32 条
[21]   Digital communication with Rydberg atoms and amplitude-modulated microwave fields [J].
Meyer, David H. ;
Cox, Kevin C. ;
Fatemi, Fredrik K. ;
Kunz, Paul D. .
APPLIED PHYSICS LETTERS, 2018, 112 (21)
[22]   Using high Rydberg states as electric field sensors [J].
Osterwalder, A ;
Merkt, F .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1831-1834
[23]   Data capacity scaling of a distributed Rydberg atomic receiver array [J].
Otto, J. Susanne ;
Hunter, Marisol K. ;
Kjaergaard, Niels ;
Deb, Amita B. .
JOURNAL OF APPLIED PHYSICS, 2021, 129 (15)
[24]   Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping [J].
Prajapati, Nikunjkumar ;
Robinson, Amy K. ;
Berweger, Samuel ;
Simons, Matthew T. ;
Artusio-Glimpse, Alexandra B. ;
Holloway, Christopher L. .
APPLIED PHYSICS LETTERS, 2021, 119 (21)
[25]   Atomic spectra in a six-level scheme for electromagnetically induced transparency and Autler-Townes splitting in Rydberg atoms [J].
Robinson, Amy K. ;
Artusio-Glimpse, Alexandra B. ;
Simons, Matthew T. ;
Holloway, Christopher L. .
PHYSICAL REVIEW A, 2021, 103 (02)
[26]   Time dependence of Rydberg EIT in pulsed optical and RF fields [J].
Sapiro, R. E. ;
Raithel, G. ;
Anderson, D. A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (09)
[27]  
Sedlacek JA, 2012, NAT PHYS, V8, P819, DOI [10.1038/NPHYS2423, 10.1038/nphys2423]
[28]   Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning [J].
Simons, Matthew T. ;
Artusio-Glimpse, Alexandra B. ;
Holloway, Christopher L. ;
Imhof, Eric ;
Jefferts, Steven R. ;
Wyllie, Robert ;
Sawyer, Brian C. ;
Walker, Thad G. .
PHYSICAL REVIEW A, 2021, 104 (03)
[29]   A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave [J].
Simons, Matthew T. ;
Haddab, Abdulaziz H. ;
Gordon, Joshua A. ;
Holloway, Christopher L. .
APPLIED PHYSICS LETTERS, 2019, 114 (11)
[30]   Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier [J].
Song, Zhenfei ;
Liu, Hongping ;
Liu, Xiaochi ;
Zhang, Wanfeng ;
Zou, Haiyang ;
Zhang, Jie ;
Qu, Jifeng .
OPTICS EXPRESS, 2019, 27 (06) :8848-8857