Time-optimal control of two-level quantum systems by piecewise constant pulses

被引:8
作者
Dionis, E. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 6303, CNRS, 9 Ave A Savary,BP 47 870, F-21078 Dijon, France
关键词
SAMPLED-DATA CONTROL; BROAD-BAND EXCITATION; INVERSION; LIMITS; FINITE;
D O I
10.1103/PhysRevA.107.032613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply an extension of the Pontryagin maximum principle to derive time-optimal controls of two-level quantum systems by means of piecewise constant pulses. Global optimal solutions are obtained for state-to-state transfer in the cases with one and two controls. Exact quantum speed limits are established as a function of the sampling period. We observe numerically an exponential convergence towards the minimum time in the continuous limit when this period goes to zero. We show that this convergence is only polynomial for a linearized quantum system. We discuss the experimental impact of this result.
引用
收藏
页数:12
相关论文
共 65 条
  • [41] Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field
    Lapert, M.
    Tehini, R.
    Turinici, G.
    Sugny, D.
    [J]. PHYSICAL REVIEW A, 2008, 78 (02):
  • [42] Speedup for quantum optimal control from automatic differentiation based on graphics processing units
    Leung, Nelson
    Abdelhafez, Mohamed
    Koch, Jens
    Schuster, David
    [J]. PHYSICAL REVIEW A, 2017, 95 (04)
  • [43] Exact broadband excitation of two-level systems by mapping spins to springs
    Li, Jr-Shin
    Ruths, Justin
    Glaser, Steffen J.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [44] Ensemble Control of Finite-Dimensional Time-Varying Linear Systems
    Li, Jr-Shin
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (02) : 345 - 357
  • [45] Robust control of an ensemble of springs: Application to ion cyclotron resonance and two-level quantum systems
    Martikyan, V
    Devra, A.
    Guery-Odelin, D.
    Glaser, S. J.
    Sugny, D.
    [J]. PHYSICAL REVIEW A, 2020, 102 (05)
  • [46] Speeding up and slowing down the relaxation of a qubit by optimal control
    Mukherjee, Victor
    Carlini, Alberto
    Mari, Andrea
    Caneva, Tommaso
    Montangero, Simone
    Calarco, Tommaso
    Fazio, Rosario
    Giovannetti, Vittorio
    [J]. PHYSICAL REVIEW A, 2013, 88 (06):
  • [47] Multiple-spin coherence transfer in linear Ising spin chains and beyond: Numerically optimized pulses and experiments
    Nimbalkar, Manoj
    Zeier, Robert
    Neves, Jorge L.
    Elavarasi, S. Begam
    Yuan, Haidong
    Khaneja, Navin
    Dorai, Kavita
    Glaser, Steffen J.
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [48] Monotonically convergent algorithms for solving quantum optimal control problems of a dynamical system nonlinearly interacting with a control
    Ohtsuki, Yukiyoshi
    Nakagami, Kazuyuki
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [49] Quantum speed limit and optimal evolution time in a two-level system
    Poggi, P. M.
    Lombardo, F. C.
    Wisniacki, D. A.
    [J]. EPL, 2013, 104 (04)
  • [50] Pontryagin L.S., 1962, MATH THEORY OPTIMAL