Time-optimal control of two-level quantum systems by piecewise constant pulses

被引:8
作者
Dionis, E. [1 ]
Sugny, D. [1 ]
机构
[1] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 6303, CNRS, 9 Ave A Savary,BP 47 870, F-21078 Dijon, France
关键词
SAMPLED-DATA CONTROL; BROAD-BAND EXCITATION; INVERSION; LIMITS; FINITE;
D O I
10.1103/PhysRevA.107.032613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply an extension of the Pontryagin maximum principle to derive time-optimal controls of two-level quantum systems by means of piecewise constant pulses. Global optimal solutions are obtained for state-to-state transfer in the cases with one and two controls. Exact quantum speed limits are established as a function of the sampling period. We observe numerically an exponential convergence towards the minimum time in the continuous limit when this period goes to zero. We show that this convergence is only polynomial for a linearized quantum system. We discuss the experimental impact of this result.
引用
收藏
页数:12
相关论文
共 65 条
  • [1] Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation
    Abdelhafez, Mohamed
    Schuster, David, I
    Koch, Jens
    [J]. PHYSICAL REVIEW A, 2019, 99 (05)
  • [2] Optimally controlled quantum discrimination and estimation
    Basilewitsch, Daniel
    Yuan, Haidong
    Koch, Christiane P.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [3] Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/NPHYS2170, 10.1038/nphys2170]
  • [4] Bernstein M.A., 2004, HDB MRI PULSE SEQUEN
  • [5] Time-optimal synthesis of SU(2) transformations for a spin-1/2 system
    Boozer, A. D.
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [6] Introduction to the Pontryagin Maximum Principle for Quantum Optimal Control
    Boscain, U.
    Sigalotti, M.
    Sugny, D.
    [J]. PRX QUANTUM, 2021, 2 (03):
  • [7] Time minimal trajectories for a spin 1/2 particle in a magnetic field
    Boscain, Ugo
    Mason, Paolo
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
  • [8] UNIFIED RICCATI THEORY FOR OPTIMAL PERMANENT AND SAMPLED-DATA CONTROL PROBLEMS IN FINITE AND INFINITE TIME HORIZONS
    Bourdin, Loic
    Trelat, Emmanuel
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (01) : 489 - 508
  • [9] Linear-quadratic optimal sampled-data control problems: Convergence result and Riccati theory
    Bourdin, Loic
    Trelat, Emmanuel
    [J]. AUTOMATICA, 2017, 79 : 273 - 281
  • [10] OPTIMAL SAMPLED-DATA CONTROL, AND GENERALIZATIONS ON TIME SCALES
    Bourdin, Loic
    Trelat, Emmanuel
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2016, 6 (01) : 53 - 94