Enhancement of interfacial sodium ion transport stability in quasi-solid-state sodium-ion batteries using polyethylene glycol

被引:10
作者
Hou, Minjie [1 ]
Zi, Jie [1 ]
Zhao, Lanqing [1 ]
Zhou, Yingjie [1 ]
Li, Fupeng [1 ]
Xie, Zhipeng [1 ]
Zhang, Da [1 ,2 ,3 ]
Yang, Bin [1 ,2 ]
Liang, Feng [1 ,2 ,3 ]
机构
[1] Kunming Univ Sci & Technol, Key Lab Nonferrous Vacuum Met Yunnan Prov, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Natl Engn Res Ctr Vacuum Met, Kunming 650093, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROLYTE;
D O I
10.1039/d3qm00054k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poor electrode/solid electrolyte interface stability and dendrite growth have seriously hindered the widespread application of solid-state sodium-ion batteries with high energy density, low cost, and high safety. Herein, a facile strategy is proposed to stabilize the interfacial layer and inhibit dendrite growth using a polyethylene glycol (PEG)-modified poly(vinylidene fluoride-co-hexafluoropropylene)-in-NASICON (Na3Zr2Si2PO12) quasi-solid electrolyte (QSE). PEG enhances the coordination strength between Na+ and solvent molecules, and inhibits the volatilization of the solvent. The "sodiophilic" -OH functional group improves the wettability of the QSE surface to sodium metal and inhibits the dendrite growth, thereby constructing a stable interfacial ion transport channel. The room temperature ionic conductivity of QSE with 5% PEG content is 2.4 x 10(-4) S cm(-1), and has a high Na+ transference number of 0.84. In addition, the Na||Na battery exhibits stable sodium deposition/stripping capability at a current density of 0.2 mA cm(-2) for 3000 h without dendrite growth. The initial discharge specific capacity of the Na||Na3V2(PO4)(3) battery at 1C current density is 100.3 mA h g(-1), and the capacity retention rate after 200 cycles is up to 94%. The mechanism of action of a PEG-modified QSE was determined, which provides a reference for the rational design and optimization of QSEs.
引用
收藏
页码:2027 / 2037
页数:12
相关论文
共 52 条
[1]  
Ai S., 2022, J ELECTROANAL CHEM, V34
[2]   Quasi-solid polymer-in-ceramic membrane for Li-ion batteries [J].
Blanga, R. ;
Golodnitsky, D. ;
Ardel, G. ;
Freedman, K. ;
Gladkich, A. ;
Rosenberg, Yu. ;
Nathan, M. ;
Peled, E. .
ELECTROCHIMICA ACTA, 2013, 114 :325-333
[3]   A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments [J].
Chang, Zhi ;
Yang, Huijun ;
Zhu, Xingyu ;
He, Ping ;
Zhou, Haoshen .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance [J].
Cheng, Meng ;
Qu, Tao ;
Zi, Jie ;
Yao, Yaochun ;
Liang, Feng ;
Ma, Wenhui ;
Yang, Bin ;
Dai, Yongnian ;
Lei, Yong .
NANOTECHNOLOGY, 2020, 31 (42)
[5]   Recent advanced skeletons in sodium metal anodes [J].
Chu, Chenxiao ;
Li, Rui ;
Cai, Feipeng ;
Bai, Zhongchao ;
Wang, Yunxiao ;
Xu, Xun ;
Wang, Nana ;
Yang, Jian ;
Dou, ShiXue .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (08) :4318-4340
[6]   Heterostructured Gel Polymer Electrolyte Enabling Long-Cycle Quasi-Solid-State Lithium Metal Batteries [J].
Cui, Shaolun ;
Wu, Xuewen ;
Yang, Yang ;
Fei, Minfei ;
Liu, Sheng ;
Li, Guoran ;
Gao, Xue-Ping .
ACS ENERGY LETTERS, 2022, 7 (01) :42-52
[7]   Fundamental investigations on the sodium-ion transport properties of mixed polyanion solid-state battery electrolytes [J].
Deng, Zeyu ;
Mishra, Tara P. ;
Mahayoni, Eunike ;
Ma, Qianli ;
Tieu, Aaron Jue Kang ;
Guillon, Olivier ;
Chotard, Jean-Noel ;
Seznec, Vincent ;
Cheetham, Anthony K. ;
Masquelier, Christian ;
Gautam, Gopalakrishnan Sai ;
Canepa, Pieremanuele .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Tailoring inorganic-polymer composites for the mass production of solid-state batteries [J].
Fan, Li-Zhen ;
He, Hongcai ;
Nan, Ce-Wen .
NATURE REVIEWS MATERIALS, 2021, 6 (11) :1003-1019
[9]   Quasi-Solid-State Sodium-Ion Full Battery with High-Power/Energy Densities [J].
Guo, Jin-Zhi ;
Yang, Ai-Bo ;
Gu, Zhen-Yi ;
Wu, Xing-Long ;
Pang, Wei-Lin ;
Ning, Qiu-Li ;
Li, Wen-Hao ;
Zhang, Jing-Ping ;
Su, Zhong-Min .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (21) :17903-17910
[10]   Poly(ethylene glycol) brush on Li6.4La3Zr1.4Ta0.6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries [J].
Guo, Qingya ;
Xu, Fanglin ;
Shen, Lin ;
Wang, Zhiyan ;
Wang, Jia ;
He, Hao ;
Yao, Xiayin .
JOURNAL OF POWER SOURCES, 2021, 498