A super-resolution network using channel attention retention for pathology images

被引:2
|
作者
Jia, Feiyang [1 ]
Tan, Li [1 ]
Wang, Ge [1 ]
Jia, Caiyan [2 ]
Chen, Zhineng [3 ]
机构
[1] Beijing Technol & Business Univ, Beijing Key Lab Big Data Technol Food Safety, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing, Peoples R China
[3] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
关键词
Breast cancer; Pathology images; Super-resolution; Residual network; Channel attention; HIGH-RESOLUTION IMAGE;
D O I
10.7717/peerj-cs.1196
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image super-resolution (SR) significantly improves the quality of low-resolution images, and is widely used for image reconstruction in various fields. Although the existing SR methods have achieved distinguished results in objective metrics, most methods focus on real-world images and employ large and complex network structures, which are inefficient for medical diagnosis scenarios. To address the aforementioned issues, the distinction between pathology images and real-world images was investigated, and an SR Network with a wider and deeper attention module called Channel Attention Retention is proposed to obtain SR images with enhanced highfrequency features. This network captures contextual information within and across blocks via residual skips and balances the performance and efficiency by controlling the number of blocks. Meanwhile, a new linear loss was introduced to optimize the network. To evaluate the work and compare multiple SR works, a benchmark dataset bcSR was created, which forces a model training on wider and more critical regions. The results show that the proposed model outperforms state-of-the-art methods in both performance and efficiency, and the newly created dataset significantly improves the reconstruction quality of all compared models. Moreover, image classification experiments demonstrate that the suggested network improves the performance of downstream tasks in medical diagnosis scenarios. The proposed network and dataset provide effective priors for the SR task of pathology images, which significantly improves the diagnosis of relevant medical staff. The source code and the dataset are available on https://github.com/MoyangSensei/CARN-Pytorch.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] SUPER-RESOLUTION OF SENTINEL-2 IMAGES BASED ON DEEP CHANNEL-ATTENTION RESIDUAL NETWORK
    Zhu, Xi
    Xu, Yang
    Wei, Zhihui
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 628 - 631
  • [2] Dual attention mechanism network for lung cancer images super-resolution
    Zhu, Dongmei
    Sun, Degang
    Wang, Dongbo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [3] Novel Channel Attention Residual Network for Single Image Super-Resolution
    Shi W.
    Du H.
    Mei W.
    Journal of Beijing Institute of Technology (English Edition), 2020, 29 (03): : 345 - 353
  • [4] Attention hierarchical network for super-resolution
    Zhaoyang Song
    Xiaoqiang Zhao
    Yongyong Hui
    Hongmei Jiang
    Multimedia Tools and Applications, 2023, 82 : 46351 - 46369
  • [5] Attention hierarchical network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Hui, Yongyong
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (30) : 46351 - 46369
  • [6] Channel Attention Network for Wireless Capsule Endoscopy Image Super-Resolution
    Sarvaiya, Anjali
    Vaghela, Hiren
    Upla, Kishor
    Raja, Kiran
    Pedersen, Marius
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT II, 2024, 2010 : 432 - 444
  • [7] IMAGE SUPER-RESOLUTION USING MULTI-RESOLUTION ATTENTION NETWORK
    Liu, Anqi
    Li, Sumei
    Chang, Yongli
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1610 - 1614
  • [8] Image Super-Resolution Using Very Deep Residual Channel Attention Networks
    Zhang, Yulun
    Li, Kunpeng
    Li, Kai
    Wang, Lichen
    Zhong, Bineng
    Fu, Yun
    COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 294 - 310
  • [9] Spectral Super-Resolution of Multispectral Images Using Spatial-Spectral Residual Attention Network
    Zheng, Xiangtao
    Chen, Wenjing
    Lu, Xiaoqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Super-resolution reconstruction of medical images based on deep residual attention network
    Zhao, Dongxu
    Wang, Wen
    Xiao, Zhitao
    Zhang, Fang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27259 - 27281