FINITE-DIMENSIONAL GLOBAL ATTRACTOR FOR THE THREE-DIMENSIONAL VISCOUS CAMASSA-HOLM EQUATIONS WITH FRACTIONAL DIFFUSION ON BOUNDED DOMAINS

被引:0
作者
Tinh, Le tran [1 ]
机构
[1] Hong Duc Univ, Fac Nat Sci, Thanhhoa, Vietnam
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 07期
关键词
Fractional Camassa-Holm equations; well-posedness; weak solutions; global attractor; fractal dimension; determining modes; NAVIER-STOKES EQUATIONS; WELL-POSEDNESS; NUMERICAL SIMULATIONS; DETERMINING MODES; VOLUME ELEMENTS; MANIFOLDS; EXISTENCE; SYSTEMS; NUMBER; FAMILY;
D O I
10.3934/dcdsb.2023205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The paper deals with the well-posedness and long-time behavior of solutions for a class of viscous Camassa-Holm equations with fractional diffusion on bounded domains via the global attractor approach. We first prove the existence and uniqueness of weak solutions. Next, we point out the existence of a finite fractal dimensional global attractor and derive upper bounds for the fractal dimension of the global attractor. Finally, the number of determining modes is also studied here.
引用
收藏
页码:2880 / 2902
页数:23
相关论文
共 52 条
[1]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[2]   Multiplication in Sobolev spaces, revisited [J].
Behzadan, A. ;
Holst, M. .
ARKIV FOR MATEMATIK, 2021, 59 (02) :275-306
[3]   The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion [J].
Bessaih, H. ;
Ferrario, B. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :1822-1849
[4]   On questions of decay and existence for the viscous Camassa-Holm equations [J].
Bjorland, Clayton ;
Schonbek, Maria E. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05) :907-936
[5]   DECAY ASYMPTOTICS OF THE VISCOUS CAMASSA-HOLM EQUATIONS IN THE PLANE [J].
Bjorland, Clayton .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :516-539
[6]  
Caffarelli L., 2012, Nonlinear Partial Differ. Equ, V7, P37
[7]  
Caffarelli LA, 2010, ANN MATH, V171, P1903
[8]   Camassa-Holm equations as a closure model for turbulent channel and pipe flow [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5338-5341
[9]   A connection between the Camassa-Holm equations and turbulent flows in channels and pipes [J].
Chen, S ;
Foias, C ;
Holm, DD ;
Olson, E ;
Titi, ES ;
Wynne, S .
PHYSICS OF FLUIDS, 1999, 11 (08) :2343-2353
[10]   Direct numerical simulations of the Navier-Stokes alpha model [J].
Chen, SY ;
Holm, DD ;
Margolin, LG ;
Zhang, RY .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 133 (1-4) :66-83