Groups whose subgroups are either abelian or pronormal

被引:6
作者
Brescia, Mattia [1 ]
Ferrara, Maria [2 ]
Trombetti, Marco [1 ]
机构
[1] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Matemat Applicazioni Renato Caccioppo, Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, Caserta, Italy
关键词
AUTOMORPHISMS;
D O I
10.1215/21562261-10607307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be pronormal in G if each of its conjugates Hg in G is already conjugate to it in the subgroup (H, Hg). Extending the wellknown class of metahamiltonian groups, we study soluble groups in which every subgroup is abelian or pronormal.
引用
收藏
页码:471 / 500
页数:30
相关论文
共 29 条
[1]   Finite metahamiltonian p-groups [J].
An, Lijian ;
Zhang, Qinhai .
JOURNAL OF ALGEBRA, 2015, 442 :23-35
[2]  
[Anonymous], 1988, UKRAINIAN MATH J, V40, P627, DOI [10.1007/BF01057181, DOI 10.1007/BF01057181]
[3]  
[Anonymous], 1986, SOVIET MATH IZ VUZ, V30, P42
[4]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V47, P1, DOI 10.1515/9783110208238
[5]  
Blackburn N., 1961, Proc. London Math. Soc., V11, P1, DOI 10.1112/plms/s3-11.1.1
[6]  
Brescia M., 2023, COMMUN ALGEBRA, V51, P3346, DOI [10.1080/00927872.2023.2182604, DOI 10.1080/00927872.2023.2182604]
[7]   The structure of metahamiltonian groups [J].
Brescia, Mattia ;
Ferrara, Maria ;
Trombetti, Marco .
JAPANESE JOURNAL OF MATHEMATICS, 2023, 18 (01) :1-65
[8]   POWER AUTOMORPHISMS OF A GROUP [J].
COOPER, CDH .
MATHEMATISCHE ZEITSCHRIFT, 1968, 107 (05) :335-&
[9]   Groups whose non-permutable subgroups are metaquasihamiltonian [J].
Ferrara, Maria ;
Trombetti, Marco .
JOURNAL OF GROUP THEORY, 2020, 23 (03) :513-529
[10]  
Fouladi S, 2014, MATH REP, V16, P133