Riemann-Hilbert approach and the soliton solutions of the discrete mKdV equations

被引:18
作者
Chen, Meisen [1 ,2 ]
Fan, Engui [3 ]
He, Jingsong [1 ]
机构
[1] Shenzhen Univ, Jingsong He Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Discrete mKdV equation; Inverse scattering transform; Multiple-pole solution; Riemann-Hilbert problem; INVERSE SCATTERING TRANSFORM; LONG-TIME ASYMPTOTICS; TODA LATTICE;
D O I
10.1016/j.chaos.2023.113209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present the inverse scattering transform of the discrete mKdV equation by the Riemann- Hilbert approach. By its Lax pair, we construct the Jost solution and the reflection coefficients. With these, we assume that there are higher-order zeros for the scattering coefficient ������(������), and construct the corresponding Riemann-Hilbert (RH) problem. In this vein, by the RH problem and the reconstruction formula, we obtain the multiple-pole solutions for the discrete mKdV equations. Compared with simple-pole solutions, multiple-pole solutions possess more complicated profiles.
引用
收藏
页数:5
相关论文
共 23 条
[1]   Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Prinari, Barbara .
INVERSE PROBLEMS, 2007, 23 (04) :1711-1758
[2]   Discrete nonlocal nonlinear Schrodinger systems: Integrability, inverse scattering and solitons [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
NONLINEARITY, 2020, 33 (07) :3653-3707
[3]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[4]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[5]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[6]  
[Anonymous], 1988, Mathematical Surveys and Monographs
[7]   INVERSE SCATTERING TRANSFORM FOR THE DEFOCUSING MANAKOV SYSTEM WITH NONZERO BOUNDARY CONDITIONS [J].
Biondini, Gino ;
Kraus, Daniel .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (01) :706-757
[8]   Riemann-Hilbert approach for discrete sine-Gordon equation with simple and double poles [J].
Chen, Meisen ;
Fan, Engui .
STUDIES IN APPLIED MATHEMATICS, 2022, 148 (03) :1180-1207
[9]   Long-Time Asymptotic Behavior for the Discrete Defocusing mKdV Equation [J].
Chen, Meisen ;
Fan, Engui .
JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (03) :953-990
[10]  
Gardner C.S., 1967, PHYS REV LETT, V19, P1095, DOI DOI 10.1103/PHYSREVLETT.19.1095