Advanced flow cytometry for biomedical applications

被引:7
作者
Pang, Kai [1 ]
Dong, Sihan [2 ]
Zhu, Yuxi [1 ]
Zhu, Xi [3 ,4 ]
Zhou, Quanyu [3 ,4 ]
Gu, Bobo [3 ,4 ]
Jin, Wei [5 ]
Zhang, Rui [2 ]
Fu, Yuting [2 ]
Yu, Bingchen [1 ]
Sun, Da [1 ]
Zheng, Duanmu [1 ]
Wei, Xunbin [5 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Instrument Sci & Optoelect Engn, Beijing, Peoples R China
[2] Peking Univ, Inst Med Technol, Hlth Sci Ctr, Beijing, Peoples R China
[3] Shanghai Jiao Tong Univ, Medx Res Inst, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai, Peoples R China
[5] Peking Univ, Int Canc Inst, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
flow cytometry; imaging flow cytometry; in vivo flow cytometry; microfluidic flow cytometry; photoacoustic flow cytometry; Raman flow cytometry; CIRCULATING TUMOR-CELLS; RAMAN SCATTERING MCARS; ACUTE MYELOID-LEUKEMIA; BONE-MARROW; HIGH-THROUGHPUT; CANCER-CELLS; BLOOD; APOPTOSIS; BACTERIA; EXPRESSION;
D O I
10.1002/jbio.202300135
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.
引用
收藏
页数:16
相关论文
共 129 条
[1]   Flow cytometry: basic principles and applications [J].
Adan, Aysun ;
Alizada, Gunel ;
Kiraz, Yagmur ;
Baran, Yusuf ;
Nalbant, Ayten .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2017, 37 (02) :163-176
[2]  
Auewarakul CU, 2003, ASIAN PAC J ALLERGY, V21, P153
[3]   Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis [J].
Augustsson, Per ;
Magnusson, Cecilia ;
Nordin, Maria ;
Lilja, Hans ;
Laurell, Thomas .
ANALYTICAL CHEMISTRY, 2012, 84 (18) :7954-7962
[4]   Ploidy Status, Nuclear DNA Content and Start Codon Targeted (SCoT) Genetic Homogeneity Assessment in Digitalis purpurea L., Regenerated In Vitro [J].
Bansal, Yashika ;
Mujib, A. ;
Siddiqui, Zahid H. ;
Mamgain, Jyoti ;
Syeed, Rukaya ;
Ejaz, Bushra .
GENES, 2022, 13 (12)
[5]  
Beare A., 2008, CURR PROTOC IMMUNOL, VAppendix 4
[6]  
Bell AG, 1880, AM J SCI, V20, P305, DOI [10.2475/ajs.s3-20.118.305, DOI 10.2475/AJS.S3-20.118.305]
[7]  
Benito JM, 2004, AIDS RES HUM RETROV, V20, P227, DOI 10.1089/088922204773004950
[8]   In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues [J].
Biris, Alexandru S. ;
Galanzha, Ekaterina I. ;
Li, Zhongrui ;
Mahmood, Meena ;
Xu, Yang ;
Zharov, Vladimir P. .
JOURNAL OF BIOMEDICAL OPTICS, 2009, 14 (02)
[9]   Label-free cell cycle analysis for high-throughput imaging flow cytometry [J].
Blasi, Thomas ;
Hennig, Holger ;
Summers, Huw D. ;
Theis, Fabian J. ;
Cerveira, Joana ;
Patterson, James O. ;
Davies, Derek ;
Filby, Andrew ;
Carpenter, Anne E. ;
Rees, Paul .
NATURE COMMUNICATIONS, 2016, 7
[10]  
Borowitz M. J., 1993, CLIN IMMUNOL NEWSL, V13, P54