Low thermal conductivity of dense (TiZrHfVNbTa)Cx high-entropy carbides by tailoring carbon stoichiometry

被引:36
作者
Chen, Lei [1 ,2 ]
Zhang, Wen [1 ,2 ]
Lu, Wenyu [1 ,2 ]
Wei, Boxin [3 ]
Huo, Sijia [1 ,2 ]
Wang, Yujin [1 ,2 ]
Zhou, Yu [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Ceram, Sch Mat Sci & Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Key Lab Adv Struct Funct Integrat Mat & Green Mfg, Harbin 150001, Peoples R China
[3] Harbin Univ Sci & Technol, Sch Mat Sci & Chem Engn, Harbin 150001, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2023年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
high; entropy carbides; thermal conductivity; compositional complexity; carbon vacancies; TRANSITION-METAL CARBIDES; ZIRCONIUM CARBIDE; CERAMICS; DENSIFICATION; ABSORPTION; EVOLUTION; ZRC1-X;
D O I
10.26599/JAC.2023.9220665
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transition metal carbides are promising candidates for thermal protection materials due to their high melting points and excellent mechanical properties. However, the relatively high thermal conductivity is still a major obstacle to its application in an ultra-high-temperature insulation system. In this work, the low thermal conductivity of dense (TiZrHfVNbTa)C-x (x = 0.6-1) high-entropy carbides has been realized by adjusting the carbon stoichiometry. The thermal conductivity gradually decreases from 10.6 W center dot m(-1)center dot K-1 at room temperature to 6.4 W center dot m(-1)center dot K-1 with carbon vacancies increasing. Due to enhanced scattering of phonons and electrons by the carbon vacancies, nearly full-dense (97.9%) (TiZrHfVNbTa)C-0.6 possesses low thermal conductivity of 6.4 W center dot m(-1)center dot K-1, thermal diffusivity of 2.3 mm(2)center dot s(-1), as well as electrical resistivity of 165.5 mu Omega center dot cm. The thermal conductivity of (TiZrHfVNbTa)C-0.6 is lower than that of other quaternary and quinary high-entropy carbide ceramics, even if taking the difference of porosity into account in some cases, which is mainly attributed to compositional complexity and carbon vacancies. This provides a promising route to reduce the thermal conductivity of high-entropy carbides by increasing the number of metallic elements and carbon vacancies.
引用
收藏
页码:49 / 58
页数:10
相关论文
共 36 条
[1]  
[Anonymous], 1958, J. Phys. Chem., DOI [10.1021/j150563a030, DOI 10.1021/J150563A030]
[2]   High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [J].
Chen, Heng ;
Xiang, Huimin ;
Dai, Fu-Zhi ;
Liu, Jiachen ;
Lei, Yiming ;
Zhang, Jie ;
Zhou, Yanchun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) :1700-1705
[3]   Influence of vanadium content on the microstructural evolution and mechanical properties of (TiZrHfVNbTa)C high-entropy carbides processed by pressureless sintering [J].
Chen, Lei ;
Zhang, Wen ;
Tan, Yongqiang ;
Jia, Peng ;
Xu, Chenguang ;
Wang, Yujin ;
Zhang, Xinghong ;
Han, Jiecai ;
Zhou, Yu .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (16) :60-67
[4]   Properties of zirconium carbide for nuclear fuel applications [J].
Katoh, Yutai ;
Vasudevamurthy, Gokul ;
Nozawa, Takashi ;
Snead, Lance L. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 441 (1-3) :718-742
[5]   Reaction synthesis and characterization of a new class high entropy carbide (NbTaMoW)C [J].
Liu, Diqiang ;
Zhang, Aijun ;
Jia, Jiangang ;
Zhang, Junyan ;
Meng, Junhu .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 804
[6]   Phase evolution and properties of (VNbTaMoW)C high entropy carbide prepared by reaction synthesis [J].
Liu, Diqiang ;
Zhang, Aijun ;
Jia, Jiangang ;
Meng, Junhu ;
Su, Bo .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (08) :2746-2751
[7]   Oxidation behavior of non-stoichiometric (Zr,Hf,Ti)Cx carbide solid solution powders in air [J].
Lun, Huilin ;
Zeng, Yi ;
Xiong, Xiang ;
Ye, Ziming ;
Zhang, Zhongwei ;
Li, Xingchao ;
Chen, Haikun ;
Liu, Yufeng .
JOURNAL OF ADVANCED CERAMICS, 2021, 10 (04) :741-757
[8]   High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering [J].
Moskovskikh, D. O. ;
Vorotilo, S. ;
Sedegov, A. S. ;
Kuskov, K., V ;
Bardasova, K., V ;
Kiryukhantsev-korneev, Ph, V ;
Zhukovskyi, M. ;
Mukasyan, A. S. .
CERAMICS INTERNATIONAL, 2020, 46 (11) :19008-19014
[9]   Advances in ultra-high temperature ceramics, composites, and coatings [J].
Ni, Dewei ;
Cheng, Yuan ;
Zhang, Jiaping ;
Liu, Ji-Xuan ;
Zou, Ji ;
Chen, Bowen ;
Wu, Haoyang ;
Li, Hejun ;
Dong, Shaoming ;
Han, Jiecai ;
Zhang, Xinghong ;
Fu, Qiangang ;
Zhang, Guo-Jun .
JOURNAL OF ADVANCED CERAMICS, 2022, 11 (01) :1-56
[10]   Advanced structural ceramics in aerospace propulsion [J].
Padture, Nitin P. .
NATURE MATERIALS, 2016, 15 (08) :804-809