Toeplitz operators on the space of all holomorphic functions on finitely connected domains

被引:4
作者
Jasiczak, M. [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Ul Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
关键词
Toeplitz operator; Finitely connected domain; Fredholm; Semi-Fredholm; Invertible; Cauchy transform; Frechet space; REAL ANALYTIC-FUNCTIONS; HADAMARD MULTIPLIERS; THEOREM;
D O I
10.1007/s13398-022-01380-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define and study Toeplitz operators on the Frechet space of all holomorphic functions on finitely connected domains in the Riemann sphere. We completely characterize Fredholm, semi-Fredholm and invertible operators belonging to this class. As a result, we obtain a characterization of these classes of operators in the unit disk case. As a motivation we formulate and analyze the Riemann-Hilbert problem in the space of all holomorphic functions on the domains which we consider.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] TOEPLITZ OPERATORS IN MULTIPLY CONNECTED REGIONS
    ABRAHAMSE, MB
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (02) : 261 - 297
  • [2] Albanese A. A., 2019, DESCRIPTIVE TOPOLOGY, V286, P43
  • [3] Albanese AA, 2019, RACSAM REV R ACAD A, V113, P1533, DOI 10.1007/s13398-018-0564-2
  • [4] THE CESARO OPERATOR ON DUALS OF POWER SERIES SPACES OF INFINITE TYPE
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. JOURNAL OF OPERATOR THEORY, 2018, 79 (02) : 373 - 402
  • [5] The Cesaro operator in weighted l1 spaces
    Albanese, Angela A.
    Bonet, Jose
    Ricker, Werner J.
    [J]. MATHEMATISCHE NACHRICHTEN, 2018, 291 (07) : 1015 - 1048
  • [6] [Anonymous], 1987, Operator theory: advances and applications
  • [7] [Anonymous], 1992, Boundary problems of function theory and their application to mathematical physics
  • [8] Bell S. R., 1992, CAUCHY TRANSFORM POT
  • [9] Berenstein C. A., 1991, GRAD TEXTS MATH, V125
  • [10] Bierstedt KD., 1988, Functional Analysis and Applications, P35