Spatiotemporal control of high-intensity laser pulses with a plasma lens

被引:1
作者
Li, D. [1 ]
Miller, K. G. [2 ]
Pierce, J. R. [3 ]
Mori, W. B. [3 ]
Thomas, A. G. R. [1 ]
Palastro, J. P. [2 ]
机构
[1] Univ Michigan, Gerard Mourou Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[2] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA
[3] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 01期
基金
美国国家科学基金会;
关键词
VELOCITY; BEAMS; CODE;
D O I
10.1103/PhysRevResearch.6.013272
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spatiotemporal control encompasses a variety of techniques for producing laser pulses with dynamic intensity peaks that move independently of the group velocity. This controlled motion of the intensity peak offers a new approach to optimizing laser-based applications and enhancing signatures of fundamental phenomena. Here, we demonstrate spatiotemporal control with a plasma optic. A chirped laser pulse focused by a plasma lens exhibits a moving focal point, or "flying focus," that can travel at an arbitrary, predetermined velocity. Unlike currently used conventional or adaptive optics, a plasma lens can be located close to the interaction region and can operate at an orders of magnitude higher, near-relativistic intensity.
引用
收藏
页数:9
相关论文
共 61 条
  • [1] Programmable-trajectory ultrafast flying focus pulses
    Ambat, M., V
    Shaw, J. L.
    Pigeon, J. J.
    Miller, K. G.
    Simpson, T. T.
    Froula, D. H.
    Palastro, J. P.
    [J]. OPTICS EXPRESS, 2023, 31 (19) : 31354 - 31368
  • [2] Autofocusing luminal and superluminal spatiotemporally localized waves
    Besieris, Ioannis M.
    Saari, Peeter
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (08) : 1449 - 1455
  • [3] Phase-locked laser-wakefield electron acceleration
    Caizergues, C.
    Smartsev, S.
    Malka, V.
    Thaury, C.
    [J]. NATURE PHOTONICS, 2020, 14 (08) : 475 - +
  • [4] Implementation of a hybrid particle code with a PIC description in r-z and a gridless description in φ into OSIRIS
    Davidson, A.
    Tableman, A.
    An, W.
    Tsung, F. S.
    Lu, W.
    Vieira, J.
    Fonseca, R. A.
    Silva, L. O.
    Mori, W. B.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 1063 - 1077
  • [5] Unveiling the transverse formation length of nonlinear Compton scattering
    Di Piazza, A.
    [J]. PHYSICAL REVIEW A, 2021, 103 (01)
  • [6] Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses -: art. no. 026402
    Doumy, G
    Quéré, F
    Gobert, O
    Perdrix, M
    Martin, P
    Audebert, P
    Gauthier, JC
    Geindre, JP
    Wittmann, T
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026402 - 1
  • [7] LIGHT PIPE FOR HIGH-INTENSITY LASER-PULSES
    DURFEE, CG
    MILCHBERG, HM
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (15) : 2409 - 2412
  • [8] DEVELOPMENT OF A PLASMA WAVE-GUIDE FOR HIGH-INTENSITY LASER-PULSES
    DURFEE, CG
    LYNCH, J
    MILCHBERG, HM
    [J]. PHYSICAL REVIEW E, 1995, 51 (03): : 2368 - 2389
  • [9] Holographic Plasma Lenses
    Edwards, M. R.
    Munirov, V. R.
    Singh, A.
    Fasano, N. M.
    Kur, E.
    Lemos, N.
    Mikhailova, J. M.
    Wurtele, J. S.
    Michel, P.
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (06)
  • [10] Plasma Transmission Gratings for Compression of High-Intensity Laser Pulses
    Edwards, Matthew R.
    Michel, Pierre
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (02)