Deep learning methods for fully automated dental age estimation on orthopantomograms

被引:3
|
作者
Shi, Yuchao [1 ]
Ye, Zelin [1 ]
Guo, Jixiang [2 ]
Tang, Yueting [1 ]
Dong, Wenxuan [2 ]
Dai, Jiaqi [3 ]
Miao, Yu [1 ]
You, Meng [1 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, Dept Oral Med Imaging,State Key Lab Oral Dis, 3rd Sect South Renmin Rd 14, Chengdu 610041, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
[3] Sichuan Hosp Stomatol, Dept Oral Radiol, Chengdu 610015, Peoples R China
关键词
Dental age; Deep learning; Artificial intelligence; Orthopantomogram; Radiography; ADOLESCENTS; DEVELOPMENT; REFERENCE DATASET; DATA SET; CHILDREN; RDS;
D O I
10.1007/s00784-024-05598-2
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
ObjectivesThis study aimed to use all permanent teeth as the target and establish an automated dental age estimation method across all developmental stages of permanent teeth, accomplishing all the essential steps of tooth determination, tooth development staging, and dental age assessment.MethodsA three-step framework for automatically estimating dental age was developed for children aged 3 to 15. First, a YOLOv3 network was employed to complete the tasks of tooth localization and numbering on a digital orthopantomogram. Second, a novel network named SOS-Net was established for accurate tooth development staging based on a modified Demirjian method. Finally, the dental age assessment procedure was carried out through a single-group meta-analysis utilizing the statistical data derived from our reference dataset.ResultsThe performance tests showed that the one-stage YOLOv3 detection network attained an overall mean average precision 50 of 97.50 for tooth determination. The proposed SOS-Net method achieved an average tooth development staging accuracy of 82.97% for a full dentition. The dental age assessment validation test yielded an MAE of 0.72 years with a full dentition (excluding the third molars) as its input.ConclusionsThe proposed automated framework enhances the dental age estimation process in a fast and standard manner, enabling the reference of any accessible population.Clinical relevanceThe tooth development staging network can facilitate the precise identification of permanent teeth with abnormal growth, improving the effectiveness and comprehensiveness of dental diagnoses using pediatric orthopantomograms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Deep Learning with PCANet for Human Age Estimation
    Zheng, DePeng
    Du, JiXiang
    Fan, WenTao
    Wang, Jing
    Zhai, ChuanMin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 300 - 310
  • [42] Deep Learning for Age Estimation Using EfficientNet
    Aruleba, Idowu
    Viriri, Serestina
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 407 - 419
  • [43] Automated estimation of total lung volume using chest radiographs and deep learning
    Sogancioglu, Ecem
    Murphy, Keelin
    Scholten, Ernst Th
    Boulogne, Luuk H.
    Prokop, Mathias
    van Ginneken, Bram
    MEDICAL PHYSICS, 2022, 49 (07) : 4466 - 4477
  • [44] A fully-automated deep learning pipeline for cervical cancer classification
    Alyafeai, Zaid
    Ghouti, Lahouari
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [45] Deep learning techniques for the fully automated detection and segmentation of brain MRI
    Tamer, Ahmed
    Youssef, Ahmed
    Ibrahim, Mohammed
    Abd-El Aziz, Mostafa
    Hesham, Youssef
    Mohammed, Zeyad
    Eissa, M. M.
    Ahmed, Soha
    Khoriba, Ghada
    5TH INTERNATIONAL CONFERENCE ON COMPUTING AND INFORMATICS (ICCI 2022), 2022, : 310 - 315
  • [46] Fully Automated Mitral Inflow Doppler Analysis Using Deep Learning
    Elwazir, Mohamed Y.
    Akkus, Zeynettin
    Oguz, Didem
    Ye, Zi
    Oh, Jae K.
    2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, : 691 - 696
  • [47] Web-based fully automated cephalometric analysis by deep learning
    Kim, Hannah
    Shim, Eungjune
    Park, Jungeun
    Kim, Yoon-Ji
    Lee, Uilyong
    Kim, Youngjun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 194
  • [48] VESUNETDeep: A Fully Convolutional Deep Learning Architecture for Automated Vessel Segmentation
    Atli, Ibrahim
    Gedik, O. Serdar
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [49] Deep learning-based, fully automated, pediatric brain segmentation
    Kim, Min-Jee
    Hong, Eunpyeong
    Yum, Mi-Sun
    Lee, Yun-Jeong
    Kim, Jinyoung
    Ko, Tae-Sung
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [50] Ordinal Deep Learning for Facial Age Estimation
    Liu, Hao
    Lu, Jiwen
    Feng, Jianjiang
    Zhou, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (02) : 486 - 501