NON-COMPACT EINSTEIN MANIFOLDS WITH SYMMETRY

被引:16
作者
Boehm, Christoph [1 ]
Lafuente, Ramiro A. [2 ]
机构
[1] Univ Munster, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Queensland, Sch Math & Phys, St Lucia, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
RICCI CURVATURE; PRINCIPAL EIGENVALUE; METRICS; SOLVMANIFOLDS; SOLITONS; CONJECTURE; THEOREM; SPACES; CONE;
D O I
10.1090/jams/1022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For Einstein manifolds with negative scalar curvature admitting an isometric action of a Lie group G with compact, smooth orbit space, we show that the nilradical N of G acts polarly and that the N-orbits can be extended to minimal Einstein submanifolds. As an application, we prove the Alekseevskii conjecture: Any homogeneous Einstein manifold with negative scalar curvature is diffeomorphic to a Euclidean space. © 2023, American Mathematical Society. All rights reserved.
引用
收藏
页码:591 / 651
页数:61
相关论文
共 94 条
[1]   Classification of Nilsoliton metrics in dimension seven [J].
Alberto Fernandez-Culma, Edison .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 86 :164-179
[2]  
Alekseevsk D.V., 1968, Funct. Anal. Appl., V2, P11
[3]  
Alekseevski D.V., 1975, Mat. Sb. (N.S.), V96, P168
[4]  
Alekseevskii D. V., 1975, IZV AKAD NAUK SSSR M, V39, P315
[5]  
Alekseevskiiand D. V., 1975, Funkcional. Anal. i Prilozen., V9, P5
[6]   EINSTEIN EXTENSIONS OF RIEMANNIAN MANIFOLDS [J].
Alekseevsky, D. ;
Nikolayevsky, Y. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) :6059-6083
[7]  
Anderson MT, 2006, J DIFFER GEOM, V73, P219
[8]  
[Anonymous], 1971, ACTUAL SCI IND
[9]  
[Anonymous], 1998, Grad. Stud. Math.
[10]  
[Anonymous], 1999, J. Geom. Anal., DOI DOI 10.1007/BF02921971