Automatic recognition of tumor region in multiphoton images of hepatocellular carcinoma using a convolutional neural network

被引:0
作者
Zhang, Zheng [1 ]
Yu, Xunbin [2 ]
Zhang, Xiong [1 ]
Chen, Jianxin [1 ]
Bai, Yannan [3 ]
Li, Lianhuang [1 ]
机构
[1] Fujian Normal Univ, Key Lab OptoElect Sci & Technol Med, Fujian Prov Key Lab Photon Technol, Minist Educ, Fuzhou 350007, Peoples R China
[2] Fujian Prov Hosp, Dept Pathol, Fuzhou 350001, Peoples R China
[3] Fujian Med Univ, Fujian Prov Hosp, Dept Hepatobiliary & Pancreat Surg, Shengli Clin Med Coll, Fuzhou 350001, Peoples R China
来源
OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII | 2023年 / 12770卷
基金
中国国家自然科学基金;
关键词
Multiphoton imaging; hepatocellular carcinoma; classification; MICROSCOPY;
D O I
10.1117/12.2687440
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The fundamental principle of hepatectomy is to entirely excise the tumor while preserving adequate functional liver tissue volume. Thus, identifying tumor and non-tumor areas swiftly can enhance the precision and efficiency of liver resection, ultimately improving patient survival rates. In this study, we utilized multiphoton microscopy (MPM) to label-free identify liver tumor and non-tumor regions, following by automated classification with an open-source convolutional neural network, ResNet. The outcomes demonstrate that the network model can automatically and effectively distinguish tumor and non-tumor regions without human recognition, and MPM combining with deep learning may serve as an auxiliary tool for rapidly detection of hepatocellular carcinoma and aiding in liver resection treatment.
引用
收藏
页数:7
相关论文
共 19 条
  • [1] Baecker A, 2018, EUR J CANCER PREV, V27, P205, DOI [10.1097/CEJ.0000000000000428, 10.1097/cej.0000000000000428]
  • [2] Medical liver biopsy: background, indications, procedure and histopathology
    Boyd, Alexander
    Cain, Owen
    Chauhan, Abhishek
    Webb, Gwilym James
    [J]. FRONTLINE GASTROENTEROLOGY, 2020, 11 (01) : 40 - 47
  • [3] Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms
    Campagnola, PJ
    Loew, LM
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (11) : 1356 - 1360
  • [4] Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis
    El-Serag, Hashem B.
    Rudolph, Lenhard
    [J]. GASTROENTEROLOGY, 2007, 132 (07) : 2557 - 2576
  • [5] Prognostic value of tumour-infiltrating lymphocytes based on the evaluation of frequency in patients with oestrogen receptor-positive breast cancer
    He, Jiajia
    Fu, Fangmeng
    Wang, Wei
    Xi, Gangqin
    Guo, Wenhui
    Zheng, Liqin
    Ren, Wenjiao
    Qiu, Lida
    Huang, Xingxin
    Wang, Chuan
    Li, Lianhuang
    Kang, Deyong
    Chen, Jianxin
    [J]. EUROPEAN JOURNAL OF CANCER, 2021, 154 : 217 - 226
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Hoover EE, 2013, NAT PHOTONICS, V7, P93, DOI [10.1038/nphoton.2012.361, 10.1038/nphoton.2013.361]
  • [8] Quantitative Assessment of Hepatic Steatosis Using Label-Free Multiphoton Imaging and Customized Image Processing Program
    Huang, Xingxin
    Lian, Yuan-E
    Qiu, Lida
    Yu, XunBin
    Miao, Jikui
    Zhang, Shichao
    Zhang, Zheng
    Zhang, Xiong
    Chen, Jianxin
    Bai, Yannan
    Li, Lianhuang
    [J]. LABORATORY INVESTIGATION, 2023, 103 (10)
  • [9] Getting the Most Out of Liver Biopsy
    Lidbury, Jonathan A.
    [J]. VETERINARY CLINICS OF NORTH AMERICA-SMALL ANIMAL PRACTICE, 2017, 47 (03) : 569 - +
  • [10] Automated classification of hepatocellular carcinoma differentiation using multiphoton microscopy and deep learning
    Lin, Hongxin
    Wei, Chao
    Wang, Guangxing
    Chen, Hu
    Lin, Lisheng
    Ni, Ming
    Chen, Jianxin
    Zhuo, Shuangmu
    [J]. JOURNAL OF BIOPHOTONICS, 2019, 12 (07)